3. Ферриты и магнитодиэлектрики
Ферриты - химические соединения окиси железа Fe2О3 с оксидами одного или нескольких двухвалентных металлов, имеющих общую формулу МеО×Fe2O3, где Ме - двухвалентный металл. Феррит может быть магнитным, если на месте Ме стоит ион марганца, никеля, магния, меди и некоторые другие металлы, и немагнитным - если стоит ион цинка.
Ферриты получают в виде керамики и монокристаллов. Ферритовая керамика не содержит стекловидной фазы. Изделия из ферритов получают методом спекания спрессованной массы порошкообразных окислов металлов. Ферриты являются твердыми и хрупкими материалами и допускают только шлифовку и полировку.
Технические ферриты представляют собой раствор магнитного и немагнитного ферритов. Ферриты для радиочастот делятся на две группы: никель-цинковые (NiO-ZnO-Fe2O3) и марганец-цинковый (MnO-ZnO-Fe2O3). Цинковые ферриты добавляют в магнитные ферриты для увеличения магнитной проницаемости и уменьшения коэрцитивной силы, но это приводит к снижению температурной стабильности магнитных свойств.
Значения величин mн и Hc определяется составом и структурой материала. Микроскопические поры, участки с дефектной кристаллической решеткой и др. мешают свободному перемещению доменных границ и являются причиной уменьшения магнитной проницаемости. С увеличением размера кристаллических зерен возрастает mн.
В слабых переменных магнитных полях ферриты обладают незначительными потерями на вихревые токи и гистерезис. Поэтому значение тангенса угла потерь tgd на высоких частотах в основном определяется магнитными потерями, обусловленными релаксационными и резонансными явлениями. Частота, при которой начинается резкое возрастание tgd называется критической fкр. Обычно fкр - это частота, при которой tgd = 0.1.
Инерционность смещения доменных границ, которая проявляется на высоких частотах приводит также к снижению магнитной проницаемости ферритов. Частоту fгр , при которой mн уменьшается до 0.7 от ее значения в постоянном магнитном поле называют граничной. Как правило, fкр < fгр.
Марганец - цинковые ферриты в области частот до 1 МГц обладают лучшими магнитными свойствами, чем никель - цинковые. У них меньший относительный тангенс угла потерь - tgd/mн, более высокая индукция насыщения и температура Кюри. Однако никель-цинковые ферриты обладают более высоким удельным сопротивлением и лучшими частотными свойствами. Чем больше mн, тем при более низких частотах наблюдается ее снижение. Ферриты с большим значением mэфф обладают большим значением tgd и меньшим fкр .
Во избежание ухудшения магнитных характеристик, ферриты следует оберегать от механических нагрузок.
Маркировка магнито-мягких ферритов следующая. На первом месте стоит численное значение mн, следующее за ним буквы Н и В означают соответственно низкочастотный (fкр = 0.1-50МГц) или высокочастотный (fкр = 50 - 600МГц) материал, стоящая далее буква М означает марганец-цинковый, большая Н - никель-цинковый, литий - цинковый и т.д. ферриты. Буква С означает, что феррит применяется в области сильных полей, Н - контурах, перестраиваемых подмагничиванием.
По электрическим свойствам ферриты относятся к полупроводникам с электронной проводимостью. Их электропроводность обусловлена слабосвязанными электронами, которые принадлежат ионам железа или другим катионам переменной валентности. Такие электроны под влиянием теплового движения могут переходить от иона Fe2+ к иону Fe3+, который превращается в двухвалентный ион Fe2+ и сохраняет это свойство некоторое время. С увеличением концентрации ионов Fe2+ возрастает удельная проводимость и уменьшается энергия активации Э0. Рост температуры сопровождается резким повышением проводимости из-за увеличения числа перемещающихся электронов.
s=s0 exp [-Э0/кТ],
где s0 - постоянная величина для данного материала;
Э0 - энергия активации электропроводности (Э0 = 0.1 - 0.5 ЭВ).
Концентрация двухвалентных ионов Fe2+ зависит от состава феррита и режима его обжига. Для снижения концентрации Fe2+ вводят различные добавки .
Процессы поляризации ферритов и диэлектрические потери определяются дрейфом слабосвязанных электронов под действием электрического поля. С ростом частоты поля уменьшается число электронов, которые участвует в дрейфе, и уменьшается расстояние, на которое они смещаются, и соответственно снижается поляризованность. Например на частотах ниже 1000 Гц у марганец-цинковых ферритов величина e ~ 100000, а с увеличением частоты e резко падает до значения порядка 100. Частотные характеристики диэлектрических потерь имеют максимум.
Магнитомягкие ферриты применяются в качестве сердечников контурных катушек постоянной и переменной индуктивности, сердечников импульсных трансформаторов, трансформаторов развертки телевизоров, магнитных модуляторов и усилителей. Из них изготавливают стержневые магнитные антенны, индуктивные линии задержки и др. Монокристаллы магнитомягких ферритов применяются при изготовлении магнитных головок записи и воспроизведения сигнала звукового и видеодиапазонов в магнитофонах, т.к. они обладают высоким удельным сопротивлением (что важно для уменьшения потерь) и большей твердостью по сравнению с металлическими.
Магнитодиэлектрики - это композиционные магнитомягкие материалы, состоящие из ферромагнетика и диэлектрика, применяемого в качестве связующего электроизоляционного материала. Основа должна обладать высокими магнитными свойствами, а связка - способностью образовывать между зернами сплошную электроизоляционную пленку одинаковой толщины. В качестве основы применяют карбонильное железо, альсифер, молибденовый пермаллой. Изолирующей связкой служат фенолформоальдегидные смолы, полистирол, стекло и др.
Суммарные потери мощности в магнитодиэлектрике определяются потерями на вихревые токи, последействие, гистерезис и диэлектрическими потерями. С уменьшением размера частиц ферромагнетика потери снижаются, особенно обусловленные вихревыми токами.
Магнитная проницаемость магнитодиэлектриков (mн = 10 - 250) ниже магнитной проницаемости монолитных ферромагнетиков. Это связанно с тем, что изолированные друг от друга ферромагнитные частицы создают внутреннее поле, направленное навстречу внешнему, и слабо выражен механизм намагничивания за счет смещения доменных границ, определяющий значение mн.
Из-за сильного влияния размагничивающего фактора магнитодиэлектрики имеют близкую к линейной зависимость индукции от напряженности магнитного поля и характеризуются незначительными потерями на гистерезис.
Достоинства магнитодиэлектриков: малые удельные потери энергии, слабая зависимость параметров от температуры, времени и напряженности магнитного поля, постоянство магнитной проницаемости в диапазоне частот, а недостаток - сравнительно малая начальная магнитная проницаемость.
Прессованные сердечники из магнитодиэлектриков применяются в катушках индуктивности контуров радиоприемных устройств, генераторов, фильтров и т.д.
Сердечники на основе карбонильного железа обладают высокой стабильностью, малыми потерями, положительным температурным коэффициентом магнитной проницаемости и могут использоваться в широком диапазоне частот. Карбонильное железо получается посредством термического разложения пентакарбоната железа в виде тонкого порошка, что удобно для изготовления прессованных магнитных сердечников. В карбонильном железе отсутствует кремний, фосфор, сера, но содержится углерод.
Промышленность выпускает два класса карбонильного железа: Р (марки Р-10, Р-20, Р-100) - для радиоаппаратуры и Пс - для проводной связи. Цифры указывают максимальную рабочую частоту в МГц.
Альсифер обладает невысокой стоимостью. Его температурный коэффициент магнитной проницаемости зависит от содержания алюминия и кремния и может быть положительным, отрицательным или равным нулю.
... по миру. Если в 1900 г. в год получали около 8 тысяч тонн легкого металла, то через сто лет объем его производства достиг 24 миллионов тонн. 2. Металлические проводниковые и полупроводниковые материалы, магнитные материалы 2.1 Классификация электротехнических материалов Электротехнические материалы представляют собой совокупность проводниковых, электроизоляционных, магнитных и ...
... пучка с помощью анализатора преобразуют в амплитудную. Из других МО-устройств можно выделить оптические ЗУ, МО-устройства сканирования света и ряд других. Пригодность магнитных материалов для создания на их основе магнитооптических устройств зависит от совокупности магнитооптических свойств. Магнитооптические свойства оценивают по магнитооптической активности в диапазоне оптических волн с ...
... сопровождается появлением внутренних напряжений, деформацией кристаллической решетки, что препятствует смещению доменных границ и затрудняет процесс намагничивания ферромагнетиков в слабых полях. Поэтому высокой магнитной проницаемостью обладают магнитные материалы с малыми коэффициентами анизотропии и магнитострикции. 4. Поведение ферромагнетиков в переменных магнитных полях ...
... они дают возможность экономично, с требуемой точностью оценит параметры эквивалентной схемы транзистора. Конструкция, магнитные материалы, электрические провода и изоляция Основными элементами конструкции трансформаторов являются сердечник (магнитопровод) и обмотки: К элементам конструкции относятся также конструктивные детали, служащие для крепления сердечника и установки трансформаторов в ...
0 комментариев