3 РАВНОСИЛЬНОСТЬ ФОРМУЛ ИСЧИСЛЕНИЯ ВЫСКАЗЫВАНИЙ. КОНЪЮНКТИВНАЯ НОРМАЛЬНАЯ ФОРМА
Формулы φ и ψ называются равносильными, если формула φ ≡ ψ тождественно истина. Например, формула (p Ù`p) Ú q равносильна q, потому что формула (p Ù`p) Ú q ≡ q тождественно истина (проверку с помощью таблиц истинности предоставляем читателю). Формулы p Ú`p и qÚ`q также равносильны, потому что тождественно истинна формулы p Ú`p ≡ qÚ`q.
Равносильность формул может быть использована для упрощения формул, т.е. для замены какой-то формулы другой формулой, ей равносильной, (эквивалентной), но содержащей либо меньшее число связок, либо меньшее число переменных, либо другие переменные, либо и то, и другое, и третье вместе взятой.
Из определения равносильности формул следует, что тождества (3) - (9) дают нам правила преобразования исходной формулы в новую, ей равносильную к этим правилам добавим и другие правила. Так, любую формулу можно заменить эквивалентной (равносильной) формулой, в которой не содержится знаки «→», «≡» и в которой отрицание опущено лишь на элементарные высказывания. С помощью таблиц истинности можно убедиться в эквивалентности следующих формул:
(р ≡ q) ≡ (р → q) Ù (q→р) (10)
р → q ≡`p Ú q (11)
(р ≡ q) ≡ (`p Ú q) Ù (`qÚр) (12)
(р ≡ q) ≡ (p Ù q) Ú (`рÙ`q) (13)
_____
(р → q) ≡ р Ù`q (14)
р Ù1 ≡ р (15)
р Ù0 ≡ 0 (16)
р Ú0 ≡ р (17)
рÚ 1 ≡ 1 (18)
р Ùq ≡`р Ú `q (19)
р Ú q ≡`рÙ`q (20)
Итак, подобно тому, как в алгебре мы имеем возможность преобразовывать, одно выражение в другое, с какой-то точки зрения более простое (скажем, приводить алгебраическое выражение к удобному для логарифмирования виду, заменять таблицу, задающую определитель, числом и т.д.), мы можем преобразовать составные высказывания. Важное значение в алгебре высказываний имеет преобразование любого составного высказывания к конъюнктивной нормальной форме. Эта нормальная форма состоит из конъюнкции дизъюнкций, где каждый дизъюнктивный член является либо элементарным высказыванием, либо его отрицанием.
На основании установленных эквивалентностей вводим следующие правила:
а1) Со знаками Ú и Ù можно оперировать как в алгебре, пользуясь ассоциативным, коммутативным и дистрибутивным законами;
а2) `р можно заменить р;
а3) р Ùq можно заменить выражением`р Ú `q, а р Ú q - выражением`рÙ`q ;
а4) р → q можно заменить выражением `p Ú q, а р ≡ q – выражением (`p Ú q) Ù(`qÚр).
Например, привести к конъюнктивной нормальной форме формулу:
((р Ú q) Ù`q ) Ú (rÙq).
Последовательным применением правила а3) получаем :
((р Ú q) Ù`q ) Ú (rÙq) ≡((р Ú q) Ù`q ) Ù (rÙq) ≡((р Ú q) Ú`q ) Ù (`rÚ`q) ≡
≡ ((`рÙ`q) Ú`q ) Ù (`rÚ`q).
Применяя к последней формуле закон дистрибутивности, получаем формулу:
(`р Ú `q )Ù( qÙ`q) Ù (`rÚ`q).
Наконец, применяя правило а2) получаем конъюнктивную нормальную форму:
(`р Ú q )Ù( qÚ`q) Ù (`rÚ`q).
Очевидно, что эта форма определяется не однозначно. Так, используя то, что qÚ`q ≡ 1 и (15), получаем другую конъюнктивную нормальную форму первоначальной формулы: (`pÚq) Ù (`rÚ`q)
Запишем обобщения законов поглощения (7):
рÙ( р Ú q1 Ú q2 Ú … Ú qп ) ≡ р (21)
рÚ ( р Ù q1Ù q2 Ù… Ù qп ) ≡ р (211)
рÙ( р Ú q1 )Ù( рÚ q2 )Ù …Ù (рÚ qп ) ≡ р (22)
рÚ ( р Ù q1 ) Ú (рÙ q2 )Ú … Ú (р Ù qп ) ≡ р (221)
Из них, а также (9), (3), (15)-(18) получаем новые эквивалентности, а значит, правила преобразования, которые позволяют сокращать число переменных, входящих в формулу:
рÚ ( qÙ`q) ≡ р (23)
рÙ ( qÚ`q) ≡ р (24)
рÚ ( qÚ`q) ≡ 1 (25)
рÙ ( qÙ`q) ≡ 0 (26)
Используя, справа налево дистрибутивный закон (6), получаем два новых соотношения:
(р Ùq ) Ú (р Ù r) ≡ р Ù (q Ú r) (27)
(р Ú q )Ù (р Ú r) ≡ р Ú (q Ù r) (28)
Например, упростить выражение:
(р Ú q Ú r) Ù (рÚ qÚ`r ).
Применяя (28), учитывая, что rÙ`r ≡ 0 и (17) получаем:
(р Ú q Ú r) Ù (рÚ qÚ`r ) ≡ (р Ú q) Ú (rÙ`r ) ≡ р Ú q.
Иногда оказывается полезным для упрощения формулы повторить в ней какие-то выражения, используя, справа налево законы поглощения (21)-(22).
Например, упростить выражение
(р Ú q )Ù (`рÚ q) Ù (`рÚ`q).
Повторим `рÚ q и, используя (6), (2), (17), (4) получаем:
(р Ú q )Ù (`рÚ q) Ù (`рÚ q) Ù (`рÚ`q) ≡ (qÚ(рÙ`р)) Ù (`рÚ (q Ù`q)) ≡ (qÚ0) Ù (`рÚ 0) ≡ qÚ`р ≡ `рÚ q.
Иногда для каких-то целей необходимо вводить в формулу новые переменные (буквы). Это делается с учетом тождеств (24) и (25) и законов дистрибутивности (6). Так, в выражение р Ú q можно ввести букву r. В самом деле, используя (3), а также (6), получаем:
р Ú q≡(р Ú q) Ú (r Ù`r ) ≡ (р Ú q Ú r) Ù (рÚ qÚ`r )
... другим. При этом предложение, истинное до замены, должно оставаться истинным и после его. Для определения через род и видовое отличие это правило формулируется, как правило, соразмеримости определяемого и определяющего понятия: совокупности предметов, охватываемые ими, должны быть одним и тем же. · Нельзя определять имя через само себя или определять его через такое другое имя, которое, ...
... изучения логики. Ступени процесса познания: чувственное познание и абстрактное мышление. Особенности абстрактного мышления, 3 его основные формы: понятие, суждение, умозаключение. Роль языка в познании. Логика как наука о законах и формах правильного мышления. Понятие логической формы. Конкретное содержание и логическая структура мысли. Понятие логического закона. Истинность мысли и правильность ...
... их произнесения или написания. В результате центр тяжести падает не на разделение темпоральных высказываний на датированные (и потому якобы определенные во времени) и не содержащие даты, а на разделение их на определенные во времени и неопределенные во времени. Определенные во времени высказывания, согласно Аристотелю, описывают либо то, что стало, либо то, что вообще не знает становления. Если ...
... применяются дополнительные правила вывода, например правило отделения конъюнкта D pÙg, р и правило присоединения дизъюнкта Dр, pÚg. 10. Применяются известные методы доказательства. Обоснование таких методов дается в учебниках логики. Например метод доказательства от противного основан на следующей теореме. Теорема о доказательстве методом от противного: если формальная теория Т2 ...
0 комментариев