Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

 

Самарский государственный технический университет

Кафедра: «Органическая химия»

“СИНТЕЗ АДИПИНОВОЙ КИСЛОТЫ”

Курсовая работа

Выполнил:

Руководитель:

Самара, 2007 г.


Содержание

 

1. Введение

1.1. Свойства адипиновой кислоты

1.2. Применение адипиновой кислоты

1.3. Синтез адипиновой кислоты

2. Литературный обзор. Методы получения дикарбоновых и поликарбоновых кислот

2.1. Карбоксилирование и алкоксикарбонилирование

2.2. Реакции конденсации

2.3. Реакции Михаэля

2.4. Окислительные методы

3. Методика эксперимента

4. Выводы

Список литературы


1. Введение 1.1.     Свойства адипиновой кислоты

Адипиновая кислота (1,4-бутандикарбоновая кислота) НООС(СН2)4СООН, молекулярная масса 146,14; бесцветные кристаллы; т. пл. 153°С, т. кип. 265°С/100 мм рт. ст.; легко возгоняется; d418 =1,344; т. разложения 210-240°С;  () = 4,54 (160°С), 2,64 (193 °С); ; , , . Растворимость в воде (г на 100 г): 1,44 (15°С), 5,12 (40°С), 34,1 (70°С). Растворимость в этаноле, в эфире – ограниченно.

Адипиновая кислота обладает всеми химическими свойствами, характерными для карбоновых кислот. Образует соли, большинство из которых растворимы в воде. Легко этерифицируется в моно- и диэфиры. С гликолями образует полиэфиры. Соли и эфиры адипиновой кислоты называются адипинатами. При взаимодействии с NH3 и аминами адипиновая кислота дает аммонийные соли, которые при дегидратации превращаются в адипамиды. С диаминами адипиновая кислота образует полиамиды, с NH3 в присутствии катализатора при 300-400 °С – адиподинитрил.

При нагревании адипиновой кислоты с уксусным ангидридом образуется линейный полиангидрид НО[—СО(СН2)4СОО—]nН, при перегонке которого при 210°С получается нестойкий циклический ангидрид (формула I), переходящий при 100°С опять в полимер. Выше 225 °С адипиновая кислота циклизуется в циклопентанон (II), который легче получается пиролизом адипината кальция.

1005-31.jpg

В промышленности адипиновую кислоту получают главным образом двухстадийным окислением циклогексана. На первой стадии (жидкофазное окисление воздухом при 142-145°С и 0,7 МПа) получают смесь циклогексанона и циклогексанола, разделяемую ректификацией. Циклогексанон используют для производства капролактама. Циклогексанол окисляют 40-60%-ной HNO3 при 55°С (катализатор NH4VO3); выход адипиновой кислоты 95%.

Адипиновую кислоту можно получить также:

а) окислением циклогексана 50-70%-ной HNO3 при 100-200°С и 0,2-1,96 МПа или N2O4 при 50°С;

б) окислением циклогексена озоном или HNO3;

в) из ТГФ по схеме:

1005-32.jpg

г) карбонилированием ТГФ в ангидрид адипиновой кислоты, из которого действием Н2О получают кислоту.

1.2.     Применение адипиновой кислоты

Основная область применения адипиновой кислоты – производство полиамидных смол и полиамидных волокон, а эти рынки давно сформировались и испытывают жесткую конкуренцию со стороны полиэфира и полипропилена [1].

Увеличивается использование адипиновой кислоты в производстве полиуретанов. Сейчас темпы роста производства и потребления полиуретанов превышают темпы роста производства и потребления полиамидов, особенно полиамидных волокон. К примеру, спрос на адипиновую кислоту со стороны западноевропейских продуцентов полиуретана постоянно повышается, и сегодня темпы его роста составляют примерно 12-15 % в год. Тем не менее, спрос на полиамид (нейлон) для производства пластмасс тоже возрастает, особенно в азиатском регионе. Объясняется это тем, что для производства полиуретанов в странах АТР чаще используют простые полиэфиры, в синтезе которых не принимает участия адипиновая кислота, поэтому до 85 % адипиновой кислоты здесь используется в производстве полиамидов. Эта особенность оказывает волновой эффект на спрос адипиновой кислоты в регионе, поэтому среднегодовые темпы прироста мирового спроса на этот продукт прогнозируются на уровне 3-3,5%. В России собственное производство адипиновой кислоты пока отсутствует, хотя имеются весьма благоприятные для этого условия: развита сырьевая база (циклогексанол, циклогексанон, азотная кислота), имеются крупные потребители конечной продукции (пластификаторов, мономеров). Перспективная потребность в адипиновой кислоте для России оценивается величиной в несколько десятков тысяч тонн в год. В Российской Федерации адипиновая кислота используется для производства пластификаторов, полиамидов, фармацевтических препаратов, полиуретанов.

Итак, адипиновая кислота – стратегически и экономически важное сырье в производстве полигексаметиленадипинамида (~ 90% производимой кислоты), ее эфиров, полиуретанов; пищевая добавка (придает кислый вкус, в частности в производстве безалкогольных напитков). То есть продукты на основе адипиновой кислоты находят широкое применение в производство полиамидов, пластификаторов, полиэфиров, полиэфирных смол для ПУ, ППУ, в промышленной переработке стекла, в радиоэлектронной и электротехнической промышленности, в производстве дезинфицирующих средств, в пищевой и химико-фармацевтической промышленности, в получении лаков и эмалей, растворителей, самоотверждающихся составов.


1.3.      Синтез адипиновой кислоты

В 5-литровую круглодонную колбу, снабженную механической мешалкой, термометром и делительной воронкой емк. В 1л, помещают 2100г (16,6мол) 50%-ной азотной кислоты (удельный вес 1,32; в вытяжном шкафу). Кислоту нагревают почти до кипения и добавляют 1г ванадата аммония. Пускают в ход мешалку и медленно через делительную воронку добавляют 500г (5мол) циклогексанола. Сперва добавляют 40-50 капель циклогексанола и реакционную смесь размешивают до начала реакции (4-5 мин), что становится заметным по выделению окислов азота (прим. 3). Затем реакционную колбу помещают в баню со льдом, содержимое колбы охлаждают до тех пор, пока температура смеси не достигнет 55-600С. После этого как можно скорее прибавляют циклогексанол, поддерживая температуру в пределах, указанных выше. К концу окисления (после того, как прибавлено 475г циклогексанола) ледяную баню удаляют; иногда колбу приходится даже нагревать для того, чтобы поддерживать необходимую температуру и чтобы избежать циклизации адипиновой кислоты.

Перемешивание продолжают еще час после прибавления всего количества циклогексанола. Затем смесь охлаждают до 0, адипиновую кислоту фильтруют с отсасыванием, промывают 500мл ледяной воды и сушат на воздухе в течение ночи. Выход белых кристаллов с т.пл. 146-1490 составляет 395-410г. Выпариванием маточных растворов можно получить еще 30-40г продукта с т.пл. 141-1440С (примечание 4). Общий выход сырой адипиновой кислоты: 415-440г, или 58-60% теоретич. (прим. 6). Полученный продукт для большинства целей достаточно чист; однако более чистый продукт может быть получен перекристаллизацией сырой адипиновой кислоты из 700мл концентрированной азотной кислоты уд. веса 1,42. потери при очистке составляют около 5%. Перекристаллизованная адипиновая кислота плавится при 151-1520 (примечания 6 и 7).


Примечания.

1.         Имеется предположение не применять катализатора, если температуру реакционной смеси, после начала реакции, поддерживать при 85-900 (Хартман, частное сообщение).

2.         Применялся технический циклогексанол, практически не содержащий фенола. Более 90% продукта кипело в пределах 158-1630.

3.         Весьма важно, чтобы окисление началось до того, как будет прибавлено значительное количество циклогексанола, в противном случае реакция может стать бурной. Необходимо ваести реакцию в хорошо действующем вытяжном шкафу.

4.         Азотнокислые маточные растворы содержат значительные количества адипиновой кислоты в смеси с глутаровой и янтарной кислотами. Оказалось, что разделение этих кислот кристаллизацией практически нецелесообразно. Однако, если азотную кислоту удалить выпариванием, а оставшуюся смесь кислот этерифицировать этиловым спиртом,то можно получить смесь этиловых эфиров янтарной (т. кип. 121-1260/20мм), глутаровой (т. кип. 133-1380/20мм) и адипиновой т. кип. (142-1470/20мм) кислоты. Эти сложные эфиры можно успешно разделить перегонкой.

5.         Следующая видоизмененная пропись может дать лучший выход. В 3-хлитровую колбу, снабженную мешалкой, обратным холодильником и капелоьной воронкой, укрепленными в асбестовых пробках, пропитанных жидким стеклом, помещают 1900мл 50%-ной азотной кислоты (1262мл азотной кислоты уд. веса 1,42, разбавленной до 1900мл) и 1г ванадата аммония. Колбу помещают на водяную баню, нагретую до 50-600, и очень медленно, при работающей мешалке, прибавляют 357г (3,5мол.) технического циклогексанола таким образом, чтобы температура бани поддерживалась при 50-600. Эта операция продолжается 6-8ч. Реакцию завершают нагреванием водяной бани до кипения, пока не прекратится выделение окислов азота (около 1 часа). Горячую реакционную смесь сливают с помощью сифона и дают ей охладиться. Выход сырой адипиновой кислоты: 372г (72% теоретич.).

Асбестовые пробки, пропитанные жидким стеклом, приготовляют из тонкого асбестового листа, нарезанного в полоски шириной 2,5см. Полоски смачивают раствором жидкого стекла и затем наматывают, например, на форштосс холодильника до получения пробки нужного размера. После сборки прибора пробки покрывают жидким стеклом и оставляют для затвердевания на ночь.


Информация о работе «Синтез и свойства адипиновой кислоты»
Раздел: Химия
Количество знаков с пробелами: 32442
Количество таблиц: 0
Количество изображений: 26

Похожие работы

Скачать
40619
6
8

... ; 7 – вакуум-фильтр; 8- угольный фильтр, 9- катионитная колонна; 10- фильтр очистки от катионита; 12- вакуум-кристаллизатор перекристаллизации; 13-кристаллизатор дополнительного выделения адипиновой кислоты; 14,28,29, 30,31 – сборники; 15,23 – выпарные аппараты; 18 – ректификационная колонна; 19,20,22 – выпарная станция; 25- циклон; 26- мокрый скруббер; 32 – сушилка с кипящим слоем. Рис.8. ...

Скачать
22188
1
4

... для очистки металлов от ржавчины, для выведения ржавых пятен с тканей, сантехнических изделий и т.д. Например, ржавое пятно на белой ткани, смоченное раствором щавелевой кислоты, исчезает прямо на глазах. Диэтиловый эфир малоновой кислоты (от лат. malum – яблоко) широко применяется в органических ситезах; химики называют его просто «малоновым эфиром». От этого же корня происходят названия ...

Скачать
8571
0
0

... материалов. Благодаря своему кислому вкусу фумаровая кислота используется в качестве вкусовой добавки к пищевым продуктам. 7. Фталевая (бензол -1, 2‑дикарбоновая) кислота В промышленности эту кислоту получают гидролизом фталевого ангидрида, который в свою очередь образуется при каталитическом окислении ортоксилола или нафталина кислородом воздуха. При нагревании фталевая кислота легко ...

Скачать
10292
7
4

... При нагревании с сильными щелочами 1,3-дикарбонильные соединения расщепляются с образованием кетона и кислоты:   Упр. 39. Допишите реакции: (а) (б)     (в) (г)   (д) (е) (ж) (з) (и) (к) (л)   Дикарбоновые кислоты   Все дикарбоновые кислоты представляют собой твердые ...

0 комментариев


Наверх