15. Фазовые, агрегатные и физические свойства полимеров, их характеристика
Из-за большой длины макромолекул и большого суммарного межмолекулярного взаимодействия перевести полимер в газообразное состояние невозможно. При приложении большого количества тепловой энергии полимер деструктурируется. Для полимера известно два фазовых состояния: кристаллическое и аморфное. В аморфном состоянии макромолекулы расположены беспорядочно, в кристаллическом - существует определенная надмолекулярная структура.
Для полимеров введено понятие о трех фазовых состояниях:
Твердые аморфные полимеры называются стеклообразными (СОС), Жидкое агрегатное состояние называется вязкотекучим (ВТС). Между СОС и ВТС находится высокоэластическое состояние (ВЭС), для которого характерны обратимые деформации.
Полимеры, находящиеся в различных состояниях, обладают различными свойствами. Под действием внешних факторов при изменении температуры полимеры переходят из одного состояния в другое.
16. Релаксационные процессы в полимерах. Принцип температурно-временной суперпозиции
Релаксация - отдых, ослабление или переход из неравновесного состояния в равновесное. Из-за большой длины и сильного межмолекулярного взаимодействия процесс релаксации протекает во времени. Процессы релаксации оказывают значительное влияние на переработку полимера. Механическая релаксация делится на два вида: релаксация напряжения и релаксация деформации. Если полимер быстро растянуть, то в нем возникнет напряжение, которое можно измерить. С течением времени это напряжение падает. Это связано с изменением конформации макромолекул: клубок - струна - клубок. Для линейного полимера, в котором макромолекулы не связаны между собой, напряжение падает до нуля, а для сшитого - останется постоянным.
Чем выше температура, тем быстрее напряжение в линейном полимере упадет до нуля. Остаточное напряжение в сшитом полимере тем больше, чем больше сшивок. Релаксация деформации приводит к ползучести или крипу. Это релаксационный процесс нарастания деформации под действием постоянной нагрузки. Ползучесть увеличивает размеры изделий и часто препятствует их эксплуатации.
Для сшитого полимера деформации после растяжения и снятия нагрузки снижается до нуля благодаря сшивкам. Для линейного полимера остается некоторая остаточная деформация εост, которая возникает из-за необратимого перемещения части несвязанных между собой макромолекул. Остаточная деформация для линейных полимеров очень велика, однако и для сшитых полимеров велика для случайно несшитых макромолекул.
Увеличение частоты (то есть времени действия силы) и уменьшение температуры действуют на полимер одинаково. Чем быстрее действует сила, тем большее сопротивление со стороны полимера, тем полимер жестче в момент действия силы. Это связано с тем, что громоздкие макромолекулы и надмолекулярные структуры при быстром деформировании не успевают перестраиваться в направлении действия силы. Такое же снижение подвижности структурных единиц происходит при понижении температуры. Такая эквивалентность действия температуры и времени действия силы называется принципом температурно-временной суперпозиции (суперпозиция наложения).
17. Растворы и коллоидные системы полимеров, образование, особенности, виды, свойства
Длительное время растворы высокомолекулярных соединений относили к лиофильным коллоидам. Считалось, что дисперсная фаза таких растворов состоит из мицелл-агрегатов макромолекул. Еще в 30-е годы ХХ в. Немецкий химик Г. Штаудингер одним из первых указывал, что полимеры в растворах диспергированы до макромолекул.
Макромолекулы полимеров представляют собой анизометричные цепи, состоящие из большого числа малых по размерам повторяющихся группировок (мономерных звеньев), соединенных друг с другом химическими связями. Молекулы органических полимеров отличаются своей гибкостью – способностью изгибаться и изменять свою форму в результате внутримолекулярного теплового движения. Изменение формы молекул отвечает изменению их конформаций (пространственного расположения атомных групп). Чем длиннее полимерные цепи и выше их гибкость, тем большее число конформаций они могут принять в растворе.
Вид конформации макромолекул во многом определяет поведение растворов полимеров. В зависимости от природы полимера и растворителя макромолекула могут принимать самые различные конформации, от конформации стержня (предельно вытянутых цепей) до конформации глобулы (плотных сферических частиц). Конформации стержня характерны для растворов жесткоцепных полимеров и полиэлектролитов в хороших (имеющих высокое термодинамическое сродство к полимеру) растворителях. Гибкоцепные макромолекулы в разбавленных растворах имеют форму клубков. В хороших растворителях полимерные клубки развернутые и рыхлые, в плохих растворителях (при низком термодинамическом сродстве между полимером и растворителем) макромолекула принимают форму плотных компактных клубков (глобул).
Растворы, в которых полимерные молекулы находятся в виде стержней, являются истинными и по своим характеристикам ничем не отличаются от растворов низкомолекулярных соединений. При сворачивании макромолекул в клубки растворы переходят в коллоидное состояние и проявляют практические все свойства, присущие высокодисперсным системам (золям).
Для растворов высокомолекулярных соединений, так же как и для коллоидных, характерны существенно меньшие величины скоростей диффузии, осмотического давления, изменения температур замерзания и кипения по сравнению с растворами низкомолекулярных соединений. Напротив, интенсивность светорассеяния растворов ВМС и коллоидных на несколько порядков больше по сравнению с растворами низкомолекулярных веществ.
Вместе с тем растворы ВМС имеют специфические, присущие только им свойства, наиболее важными из которых являются большая вязкость и наличие стадии набухания растворяемого вещества, предшествующего растворению.
Концентрацию растворов ВМС обычно выражают в массовых, объемных долях или процентах растворенного вещества, а также числом граммов полимера в 100 мл раствора.
18. Влияние структуры полимера на его прочность
1) Молекулярная масса. Прочность растет с увеличением молекулярной массы до определенного предела, соответствующего полному формированию надмолекулярной структуры, после чего меняется незначительно. В области М = 50 -100 тыс. прочность мало зависит от М.
2) Образование надмолекулярной структуры (НМС). Увеличивает прочность, причем при переходе с феролитной структуры к фибриллярной прочность повышается в 10 раз
3) Чем меньше размеры НМС, тем выше прочность
4) Кристаллические полимеры прочнее аморфных
5) Расширение ММР всегда приводит к уменьшению прочности
6) Химические сшивки между линейными макромолекулами повышают прочность, особенно для эластомеров, причем зависимость прочности от степени сшивания описывается кривой с максимумом
7) Более гибкие полимеры прочнее, чем жесткие
8) Наличие полярных групп увеличивает прочность
9) Введение наполнителей влияет на прочность неоднозначно: активные наполнители увеличивают прочность, неактивные позволяют снизить стойкость материала (например, введение мела, технического углерода)
10) Ориентация макромолекул увеличивает прочность в направлении ориентации и уменьшает в поперечном направлении
11) Температура и скорость деформации: с ростом скорости деформации или при понижении температуры - прочность уменьшается
19. Защита полимеров от старения
Старение - изменение свойств полимера под действием физических и химических факторов в процессе переработки, хранения и эксплуатации изделий из полимеров.
Стабилизаторы ( ингибиторы ) - добавки, замедляющие старение. Они выполняют две роли: 1) предотвращение образования свободных радикалов; 2) взаимодействие молекул стабилизатора с растущими радикалами или гидропероксидами и превращение их в неактивные соединения. Различают: антиоксиданты, светостабилизаторы, противостарители, антирады.
Антиоксидантами являются ароматические амины, меркаптаны (группы SH), сульфиды, замещенные ОН. При окислении образуется цепь, взаимодействующая с радикалом на стадии их образования. Сульфиды и меркаптаны разлагают гидропероксиды.
Действие антиокислителей усиливают, используя в одной композиции антиокислители различных типов взаимно усиливающий эффект называется синергическим). Существуют физические или инертные противостарители, это парафин, различные воска. Эти соединения мигрируют на поверхность полимерного изделия, покрывают ее тонким слоем и образуется пленка стойкая и непроницаемая для озона. В основном применяется для защиты резин.
Светостабилизаторы - соединения, превращающие световую энергию в менее опасную для полимера форму (например, тепловую) и рассеивают ее. Относят производные салициловой кислоты, бензотриазолы, производные бензофенона, металлорганические соединения, технический углерод ( 2 – 5 % кол-во).
Антирады - соединения, рассеивающие поглощенную энергию и отнимают ее от защищаемых полимеров так быстро, что те не успевают разрушиться (нафталин, антрацен, амины, фенолы).
... пластмасс различного назначения. Приводимый ниже материал предназначен для студентов химического отделения, специализирующихся по органической химии и химии и физике высокомолекулярных соединений, а также может быть полезен аспирантам, инженерам и научным работникам. 2.1 Метод изучения релаксации напряжения Явление релаксации - это процесс перехода из неравновесного в равновесное состояние ...
... мира, которая реально воздействует на формирование мировоззренческой компоненты их развития как личностей. Вашему вниманию представляется урок на тему: «Полимеры», наполненный экологическим содержанием, позволяющий оценить важную роль перспективы развития экологического самосознания школьников, выявить взаимосвязь между изучаемым объектом и окружающей средой, а также определить роль уроков химии ...
... большая часть проектов физического и физико-химического плана, как уже отмечалось выше, посвящена многокомпонентным полимерным системам. К ним можно отнести такие традиционные двухкомпонентные системы, как растворы и гели полимеров. Основная современная тенденция в этой области физической химии полимеров - акцент на природные полимеры и макромолекулы, способные моделировать определенные типы ...
... коэффициент трения и удельный износ. Результаты исследований приведены на рис№10, №11. Рис.10. Рис.11 Глава IY. Технология изготовления триботехнических материалов на основе полимеров 4.1. Принципы создания композиционных материалов на основе полимеров Эксплуатационная долговечность машин и механизмов в ряде случаев определяется надежностью работы узлов трения. Применение ...
0 комментариев