3 ОБОГАЩЕНИЕ
В практике рекуперации твердых отходов промышленности используют различные методы обогащения перерабатываемых материалов, подразделяемые на гравитационные, магнитные, электрические, флотационные и специальные.
3.1 Гравитационные методы
Гравитационные методы обогащения основаны на различии в скорости падения в жидкой (воздушной) среде частиц различного размера и плотности. Они объединяют обогащение отсадкой, в тяжелых суспензиях, в перемещающихся по наклонным поверхностям потоках, а также промывку.
Отсадка представляет собой процесс разделения минеральных зерен по плотности под действием переменных по направлению вертикальных струй воды (воздуха), проходящих через решето отсадочной машины. Отсадке обычно подвергают предварительно обесшламленные материалы оптимальной крупности (0,5-100 мм для нерудных и 0,2-40 мм для рудных материалов). При отсадке крупного материала находящийся на решете слой толщиной в 5-10 диаметров наибольших частиц в подаваемом на переработку материале (питании) называют постелью. При отсадке мелкого материала ( до 3-5 мм) на решете укладывают искусственную постель из крупных тяжелых частиц материала, размер которых в 3-4 раза превышает размер наиболее крупных частиц питания. В процессе отсадки материал расслаивается: в нижнем слое концентрируются тяжелые частицы, в самом верхнем – легкие мелкие. Получаемые слои разгружают раздельно.
Отсадочные машины различаются способом создания пульсаций (движением диафрагмы, поршня, решета, пульсирующей подачей сжатого воздуха), типоразмерами, конструктивными особенностями, числом фракций выделяемых продуктов. Их производительность может быть определена по формуле:
Q=3600gсрBHuт, (4)
где gср – средняя насыпная плотность материала постели, т/м3; В – ширина отсадочного отделения, м; uт - средняя скорость продольного перемещения материала в машине, м/с.
Обогащение в тяжелых суспензиях и жидкостях. Этот процесс заключается в разделении материалов по плотности в гравитационном или центробежном поле в суспензии или жидкости, плотность которой является промежуточной между плотностями разделяемых частиц.
Тяжелые суспензии представляют собой взвешенные в воде тонкодисперсные частицы тяжелых минералов или магнитных сплавов – утяжелителей, в качестве которых используют ферросилиций, пирит, пирротин, магнетитовый и гематитовый концентраты и другие материалы крупностью до 0,16 мм. В качестве тяжелых жидкостей используют растворы хлоридов кальция и цинка, тетрахлорида углерода, тетрабромэтана, хлорного олова и других соединений.
Для поддержания устойчивости суспензии в нее добавляют глину (до 3% от массы утяжелителя) или применяют смесь порошков утяжелителей различной плотности.
Наиболее распространенными аппаратами обогащения в тяжелых средах являются барабанные, конусные, колесные и гидроциклонные сепараторы.
Обогащение в потоках на наклонных поверхностях. Эти процессы включают обогащение на концентрационных столах, а также в струйных сепараторах, шлюзах и подшлюзах, в винтовых сепараторах и шлюзах.
Обогащение на концентрационных столах характеризуется разделением минеральных частиц по плотности в тонком слое воды, текущей по наклонной плоской деке стола, совершающей возвратно-поступательные горизонтальные движения перпендикулярно направлению движения воды.
Деки бывают трапециевидной и прямоугольной формы. На части поверхности дек в продольном направлении закрепляют параллельно располагаемые рифли (планки переменной высоты и длины), длина которых увеличивается от верхнего к нижнему краю стола – краю разгрузки легких продуктов. Пульпу разделяемого материала подают в верхний угол поверхности стола (деки). Питание деки смывной водой ведут с ее верхнего края, ниже места ввода пульпы. Частицы разделяемого материала большей плотности оседают в межрифленных пространствах и под действием колебаний наклонной деки продвигаются вдоль рифлей, достигая нерифленой части деки, где образуют веер частиц различной плотности, удаляемых раздельно. Неоседающие частицы меньшей плотности переносятся смывным потоком через рифли; их в виде раздельных продуктов отводят с поверхности концентрационного стола.
Более эффективно разделение предварительно классифицированных материалов. Оптимальное отношение длины деки L к ее ширине S определяется крупностью обогащаемых материалов. Концентрационные столы изготовляют в промышленном, полупромышленном и лабораторном исполнении в одно- и многоярусном вариантах с деками трех видов: песковые с L/S»2,5 для материалов крупностью d>1 мм, мелкопесковые (L/S=1,8; d=0,2-1 мм), шламовые (L/S£1,5; d<0,2 мм).
К основным регулируемым технологическим параметрам обогащения на столах относят число n ходов деки стола в минуту и оптимальную длину l (в мм) хода, определяемые по выражениям:
n=250/, (5)
l=18, (6)
где dмакс – размер частиц, равный размеру сита, на котором остаток материала составляет 5%.
Обогащение на винтовых сепараторах и шлюзах происходит, как и на столах, в небольшой толщины (6-15 мм) потоке пульпы разделяемых материалов, подаваемой в верхнюю часть наклонного желоба. Винтовые сепараторы представляют собой неподвижные вертикальные винтообразные желоба с поверхностью специального профиля. Тяжелые частицы пульпы сосредоточиваются в желобе ближе к вертикальной оси его витков и разгружаются посредством отсекателей в соответствующие приемники. Легкие частицы концентрируются у периферийной части желоба и разгружаются в нижней части сепаратора.
Струйные сепараторы снабжены суживающимся к нижнему концу и устанавливаемым под углом 15—20° желобом или конусом. Пульпу (содержание твердого 50—60%) загружают в верхнюю часть желоба. Сокращение расстояния между стенками желоба от загрузочного конца к разгрузочному приводит к увеличению высоты потока от 1,5—2 до 7—12 мм. Частицы большей плотности концентрируются в нижних слоях потока, а меньшей плотности сосредоточиваются в верхних его слоях. Разделенные потоки частиц поступают в отдельные приемники. Производительность этих аппаратов определяется крупностью и минеральным составом обрабатываемого материала и обычно составляет 0,9—5,5 т/ч на 1 м2 рабочей площади желоба. Их можно использовать и для классификации (например, строительного песка).
Шлюзы характеризуются наличием наклонных (3—15°) лотков с укрепленными на их дне трафаретами (бруски, уголки, профилированные коврики, панцирные сетки, ткань) для задержания тяжелых частиц подаваемой в верхнюю часть лотка пульпы перерабатываемого материала. Эти аппараты могут быть неподвижными и подвижными, глубокого (высота потока до 0,4 м для переработки материалов крупностью от 20 до 100 мм и более) и мелкого (высота потока до 0,05 м для материалов крупностью до 20 мм) заполнения. Аппараты мелкого заполнения называют подшлюзками. Легкие частицы пульпы уносятся потоком через трафареты, частицы большей плотности депонируются в межтрафаретных пространствах, после заполнения которых при прекращенной подаче пульпы производят их промывку водой с последующим смывом концентрата в приемник.
Ширина шлюзов обычно составляет 0,5—1,5 м, длина 6—-20 м.
Промывка. Для разрушения и удаления глинистых, песчаных и других минеральных, а также органических примесей твердых отходов часто используют процессы их промывки (отмывки), которые проводят в промывочных машинах разнообразной конструкции (гидромониторы, барабанные грохоты, бутары, вращающиеся скрубберы, корытные мойки, аппараты автоклавного и других типов). В качестве промывочного агента наиболее часто используют воду (в ряде случаев с добавками ПАВ), иногда применяют острый пар и различные растворители.
... остатков - шлака, и особенно летучей золы. Сжигание ТБПО по технологии "Пиролиз и высокотемпературное сжигание" сложно аппаратурно как на стадий пиролиза и сжигания отходов, так и на стадии газоочистки. Технология переработки отходов в печи Ванюкова при всей сложности системы газоочистки малоэффективна в смысле осаждения аэрозолей, а, следовательно, и образования диоксинов, т.е. не гарантирует ...
... , и это резко снижает опасность миграции долгоживущих радионуклидов из временных хранилищ. В Курчатовском институте совместно с МосНПО «Радон» создан способ плазменной переработки радиоактивных отходов, резко снижающий их объем (но не активность!) и существенно удешевляющий последующее хранение. Разрабатываются также новые способы антикоррозионной защиты химических реакторов и их дезактивации, ...
... источник лома твердых сплавов − это отработавшее горнобуровое оборудование и конструкционные детали, а так же отходы и брак при производстве этой продукции. 3.2. Основные способы переработки твёрдых сплавов. 3.2.1. Хлорирование. 1) Подготовленные отходы хлорируют смесью хлора с диоксидом углерода при 850-900°С. Образовавшиеся хлориды вольфрама (WC16), титана (TiCl4) и кобальта ( ...
... количество не только ведёт к расточительству и увеличению расходов, но иногда вызывает и ухудшение фильтруемости. Аэробная переработка отходов. Аэробная переработка стоков - это самая обширная область контролируемого использования микроорганизмов в биотехнологии. Она включает следующие стадии: 1) адсорбция субстрата на клеточной поверхности: 2) расщепление адсорбированного субстрата ...
0 комментариев