Теория и практика применения лазерной спектроскопии (на примере анализа объектов окружающей среды)
Содержание
Введение
1. Лазерная спектроскопия
2. Виды лазеров и их применение
3. Современное оборудование
4. Применение лазерной спектроскопии в анализе объектов окружающей среды
Литература
Введение
Применение лазерной спектроскопии к изучению характеристик сред представляет несомненный интерес как при проведении фундаментальных, так и прикладных исследований. Лазерная спектроскопия это раздел оптической спектроскопии, методы которого основаны на применении монохроматического излучения лазеров для стимулирования квантовых переходов между вполне определёнными уровнями. Эти методы позволяют получать локальную информацию о параметрах исследуемых объектов с высоким пространственным, временным и спектральным разрешением. Преимущество лазеров над некогерентными источниками света заключается в возможности достижения большой спектральной плотности мощности, что значительно уменьшает проблемы шумов, вызванных фоновым излучением или шумами приемников.
Лазерная спектроскопия по сравнению с другими бесконтактными оптическими методами диагностики позволяет проводить измерения на значительном расстоянии от исследуемого объекта и получать информацию об его составе (например, лидарное зондирование атмосферы). Принципиально новые возможности лазерная спектроскопия приобрела с появлением лазеров с плавно перестраиваемой частотой, которые являются комбинацией источника света и спектрометра ультравысокого разрешения, что даёт возможность измерять профили спектральных линий. Одними из наиболее перспективных аппаратурных комплексов представляются диагностические системы, состоящие из лазеров на красителях с оптической накачкой эксимерными лазерами. Кроме того, эксимерные лазеры могут применяться как самостоятельные системы, например, для диагностики в биологии и медицине. Это позволяет создавать многофункциональные диагностические системы для фундаментальных и прикладных исследований.
По мере роста масштабов исследований на установках с магнитной термоизоляцией в рамках программ УТС и перехода к созданию прототипа термоядерного реактора, возрастает роль методов диагностики, позволяющих проводить измерения параметров высокотемпературной плазмы в условиях затрудненного доступа к плазме и при наличии целого ряда неблагоприятных факторов. Диагностическая аппаратура и методики, основанные на использовании лазерной спектроскопии, позволяют удовлетворять этим достаточно жестким требованиям, и их разработка является актуальной задачей.
Еще одно актуальное направление диссертационной работы состоит в возможности использования специализированных лазерных систем для геофизических и космических лидаров и лидарных систем для экологического мониторинга окружающей среды. Важными приложениями также представляют исследования предварительно облученных оптических материалов для ИТЭРа, применение лазерно-индуцированной фотолюминесценции для диагностики биологических объектов в интересах медицины и микробиологии.
1. Лазерная спектроскопия
Раздел оптической спектроскопии, изучающий полученные с помощью лазера спектры испускания, поглощения, рассеяния. Лазерная спектроскопия позволяет исследовать вещества на атомно-молекулярном уровне с высокой чувствительностью, избирательностью, спектральным и временным разрешением. В зависимости от типа взаимодействия света с исследуемым веществом, методы лазерной спектроскопии подразделяют на линейные, основанные на одноквантовом линейном взаимодействии и нелинейные, основанные на нелинейном одноквантовом или многоквантовом взаимодействии. В спектральных приборах используют лазеры с перестраиваемой частотой – от далекой ИК области до вакуумного УФ, что обеспечивает возбуждение почти любых квантовых переходов атомов и молекул. Перестраиваемые лазеры с узкой полосой излучения, в частности, инжекционные лазеры в ИК области и лазеры на красителях в видимой области (а в сочетании с нелинейным преобразованием частоты – в ближней УФ и ближней ИК областях) дают возможность измерять истинную форму спектра поглощения образца без какого-либо влияния спектрального инструмента. Использование перестраиваемых лазеров повышает чувствительность всех известных методов спектроскопии (абсорбционных, флуоресценции и т.д.) как для атомов, так и для молекул. На основе таких лазеров были разработаны принципиально новые высокочувствительные методы: внутрирезонаторной лазерной спектроскопии, когерентного антистоксова комбинационного рассеяния, резонансной фотоионизационной лазерной спектроскопии. Последний метод основан на резонансном возбуждении частицы импульсным лазерным излучением, частота которого точно настроена на частоту резонансного перехода, и последующей ионизации возбужденной частицы путем поглощения одного или нескольких фотонов из дополнительного лазерного импульса. При достаточной интенсивности лазерных импульсов эффективность резонансной фотоионизации близка к 100%, такова же эффективность регистрации иона электронным умножителем. Это обеспечивает высокую чувствительность метода и возможность детектирования следов элементов в образцах на уровне 10-10-10-12% в обычных экспериментах, а в специальных – на уровне одиночных частиц. Высокая интенсивность излучения позволяет осуществлять нелинейное взаимодействие света с атомами и молекулами, за счет чего значительная часть частиц переведена в возбужденное состояние, а также становятся вероятными запрещенные одноквантовые и многоквантовые резонансные переходы между уровнями атомов и молекул, ненаблюдаемые при слабой интенсивности света. Короткая (управляемая) длительность излучения позволяет возбуждать высоколежащие уровни энергии за времена короче времени релаксации любого квантового состояния. С использованием лазеров ультракоротких (пикосекундных и фемтосекундных) импульсов разработаны методы спектроскопии с временным разрешением до 10-14 с. Эти методы обеспечивают излучение первичных фотофизических и фотохимических процессов с участием возбужденных молекул, исследование короткоживущих частиц (радикалов, комплексов и т.д.). Высокая монохроматичность лазерного излучения обеспечивает измерение спектров с почти любым необходимым спектральным разрешением и, кроме того, позволяет избирательно возбуждать атомы и молекулы одного вида в смеси, оставляя молекулы др. видов невозбужденными, что особенно важно для аналитических применений. С помощью импульсов направленного лазерного излучения можно исследовать спектры флуоресценции и рассеяния в удаленной области, например в верхней атмосфере, и получать информацию о ее составе. Этот принцип используется в методах дистанционной лазерной спектроскопии, разрабатываемых для контроля окружающей среды. При фокусировке лазерного света на малую площадь с размерами (в пределе) порядка длины Световой волны можно получить большие интенсивности, обеспечивающие быстрый нагрев и испарение локальной области. Это свойство лазера легло в основу микроспектрального эмиссионного анализа атомов и локального масс-спектрального анализа молекул. С точки зрения путей релаксации энергии возбужденных частиц и, соотв., методов детектирования, различают следующие методы лазерной спектроскопии: 1) абсорбционно-трансмиссионные, основанные на измерении спектра пропускания образца (нечувствительны к судьбе возбужденных частиц); 2) опто-калориметрический (опто-термич., опто-акустич. и т.д.), основанные на непосредственном измерении поглощенной в образце энергии; при этом необходима релаксация части энергии возбуждения в тепло (безызлучат. релаксация); 3) флуоресцентный, основанный на измерении интенсивности флуоресценции как функции длины волны возбуждающего лазера (излучат, релаксация); 4) опто-гальванический, в котором возбуждение частиц регистрируют по изменению проводимости, и фотоионизационные – по появлению заряженных частиц. Приборы, применяемые в лазерной спектроскопии, принципиально отличаются от обычных спектральных приборов. В приборах, использующих лазеры с перестраиваемой частотой, отпадает необходимость в разложении излучения в спектр с помощью диспергирующих элементов (призм, дифракц. решеток), являющихся основной частью обычных спектральных приборов. Иногда в лазерной с.пектроскопии применяют приборы, в которых излучение разлагается в спектр с помощью нелинейных кристаллов. Лазерную спектроскопию применяют для исследования кинетики и механизма реакции (в т. ч. фотохим.), точного измерения постоянных (напр., моментов инерции), избирательного определения ультрамалых количеств вещества и т.д. Спектры многоступенчатого лазерного возбуждения обладают большей избирательностью, чем обычные спектры поглощения, хорошо комбинируются с хроматографией, масс-спектрометрией и т.д.
Активная лазерная спектроскопия – один из методов нелинейной спектроскопии, исследующий поглощение или рассеяние пучка света в среде, в которой предварительно (с помощью дополнительного лазерного излучения определенных частот) селективно возбуждены и (или) сфазированы изучаемые оптические моды. Такое активное лазерное «приготовление» среды (накачка) меняет картину взаимодействия зондирующего (пробного) излучения со средой.
Активная лазерная спектроскопия основана на эффекте нелинейного взаимодействия интенсивного лазерного излучения и оптической среды. Мощное излучение накачки нарушает термодинамическое равновесие в среде, наводит корреляции между образующими ее частицами, возбуждает определенные внутренние движения в них и т.п., а более слабое зондирующее излучение выявляет наведенные возмущения и кинетику их затухания.
Методы активной лазерной спектроскопии отличаются типом исследуемого резонанса, характером оптического отклика среды, а также способом зондирования и измеряемым параметром (интенсивность, фаза, поляризация). Активная лазерная спектроскопия поглощения исследует оптический резонанс среды, проявляющийся в одно- или многофотонном поглощении света; активная лазерная спектроскопия рассеяния – резонанс, проявляющийся в рассеянии света (комбинационном, рэлеевском, Мандельштама-Бриллюэна, гиперкомбинационном, гиперрэлеевском и т.п.). Оптический отклик среды на воздействие волн накачки и зондирующего излучения может быть когерентным (связанным с наведенной нелинейной оптической поляризацией среды) или некогерентным (связанным с оптически-индуцированным возмущением населенностей уровней энергии), соответственно различают когерентную и некогерентную активную лазерную спектроскопию.
Активная лазерная спектроскопия называется стационарной или нестационарной в зависимости от того, исследуется установившийся (стационарный) или неустановившийся (переходный, нестационарный) оптический отклик среды. В последнем случае для возбуждения и зондирования среды используются короткие лазерные импульсы, длительность которых меньше характерных времен установления и релаксации исследуемых возбужденных состояний среды.
С помощью зондирующего излучения можно изучать модуляцию оптических характеристик среды (модуляционный вариант активной лазерной спектроскопии), вызываемую излучением накачки; кроме того, благодаря возмущению среды накачкой могут появляться новые спектральные или пространственные компоненты зондирующего излучения, на их исследовании основан генерационный вариант активной лазерной спектроскопии. Различные способы возбуждения и зондирования, применяемые в активной лазерной спектроскопии, приведены на рис. на примере двухуровневой системы.
Одним из методов активной лазерной спектроскопии является когерентная спектроскопия комбинационного рассеяния света. С помощью активной лазерной спектроскопии удается решать задачи, недоступные другим методам спектроскопии поглощения или рассеяния света, значительно увеличить информативность оптической спектроскопии, повысить отношение сигнал/шум на выходе традиционных спектрометров, улучшить их спектральное, пространственное и временное разрешение.
2. Виды лазеров и их применениеПо режиму работы лазеры можно разделить на импульсные и непрерывного действия. По виду активной среды лазеры делятся на газовые, жидкостные, полупроводниковые и твердотельные. По способу накачки: лазеры с оптической накачкой, газоразрядные лазеры, химические лазеры, ижекционные, лазеры и с электронной накачкой.
Для всех лазеров характерны следующие особенности излучения:
1) большая временная и пространственная когерентность. Время когерентности τ составляет 10-3с, что соответствует длине когерентности
;
2) строгая монохроматичность: ;
3) большая плотность потока энергии;
4) очень малое угловое расхождение в пучке (от 5 · 10-4 радиан до 4 · 10-2радиан).
Коэффициент полезного действия лазеров изменяется от 0,01% (для гелий-неонового лазера) до 75% (для лазера на стекле с неодимом).
Мощность непрерывного излучения лазеров изменяется от 10-3Вт (гелий-неоновый лазер) до 105Вт (газодинамический лазер на CO2). Мощность импульсного излучения изменяется от 10 Вт (полупроводниковые лазеры) до 1013Вт (лазеры на стекле с неодимом).
Особенности лазерного излучения находят самое разнообразное применение. Способность лазера концентрировать световую энергию в пространстве, времени и узком спектральном интервале может быть использована двояко:
1) нерезонансное воздействие мощных световых потоков на вещество в непрерывном и импульсном режимах (лазерная обработка материалов), использование мощных лазеров для решения проблемы термоядерного синтеза;
2) резонансное воздействие на атомы, молекулы и молекулярные комплексы, вызывающие процессы фотодиссоциации, фотоионизации, фотохимические реакции.
Нерезонансное, тепловое воздействие лазерного излучения, используемое в лазерной технологии обработки материалов, упрощает операцию получения отверстий в твердых, хрупких, тугоплавких материалах. Например, лазерная технология эффективна при изготовлении алмазных фильер – рабочего инструмента машин для волочения проволоки: через отверстие в фильере протягивается обрабатываемый материал. Лазерная технология используется для резки материала, нанесения рисунка на его поверхность, образование нужного микрорельефа на ней. Лазерная сварка позволяет соединить металлы и сплавы, не свариваемые обычным способом.
В частности, в медицине (хирургии) лазерный луч в ряде случаев с успехом используется в качестве хирургического скальпеля. В офтальмологии лазерным лучом прикрепляют отслоившуюся сетчатку глаза. Отметим, что в медицине используют и резонансное воздействие лазерного луча на ткани организма, в частности, маломощное излучение гелий-неонового лазера. Механизмы такого воздействия пока в деталях не изучены, предполагается, что его необычно высокая эффективность при очень малой мощности излучения (десятки милливатт) объясняется цепными фотохимическими реакциями, возникающими под воздействием лазерного излучения.
Применение лазеров в спектроскопии резко повысило возможность традиционных методов, кроме того, позволило создать методы, основанные на принципиально новых физических принципах. Чувствительность спектроскопических методов доведена до предельного уровня, ограниченного регистрацией единичных атомов и молекул. Методы лазерной спектроскопии используются в лазерной химии, лазерном разделении изотопов.
Лазеры широко применяют в измерительной технике. Например, лазерные интерферометры на гелий-неоновых лазерах позволяют с большой точностью производить юстировочные и нивелировочные работы. Широко используются лазерные светодальномеры и даже лазерные рулетки на портативных полупроводниковых лазерах.
Применения лазеров столь обширны, что здесь невозможно даже их простое перечисление, кроме того, область применения лазеров постоянно расширяется.
С появлением лазеров связано рождение таких новых разделов физики как нелинейная оптика и голография.
Нелинейная оптика исследует распространение мощных световых пучков в твердых телах, жидкостях и газах и их взаимодействия с веществом. Напряженности электрического поля в мощных лазерных пучках сравнимы или даже превышают внутриатомные поля. Это приводит к возникновению новых оптических эффектов и существенно меняет характер уже известных явлений. В частности, в 1969 г. была обнаружена самофокусировка света: мощный световой пучок, распространяясь в среде, не испытывает дифракционной расходимости, а, напротив, самопроизвольно сжимается.
Голография (от греческого holos – весь, полный, grapho – пишу) – способ записи и восстановления волнового поля, основанный на регистрации интерференционной картины, которая образована волной, отраженной предметом, освещаемым источником света (предметная волна), и когерентной с ней волной, идущей непосредственно от источника света (опорная волна). Зарегистрированная интерференционная картина называется голограммой.
Голограмма, освещенная опорной волной, создает такое же амплитудно-фазовое пространственное распределение волнового поля, которое создавала при записи предметная волна. Таким образом, голограмма, за счет дифракции опорной волны на записанной в ней интерференционной картине, преобразует опорную волну в копию предметной.
Основы голографии были заложены в 1948 году английским физиком Д. Габором, венгром по происхождению. Экспериментальное воплощение и дальнейшая разработка этого способа стали возможными лишь после появления источников света высокой степени когерентности – лазеров.
Схемы записи и воспроизведения голографического изображения показаны на двух рисунках 1 а, б.
... и природы вещества, участвующего в электрохимической реакции. Электрохимические параметры при этом служат аналитическими сигналами, при условии, что они измерены достаточно точно. Электрохимические методы анализа в практику химического анализа вошли сравнительно давно и занимают в ней важную роль. Впервые потенциометрическое титрование было проведено в 1893 г. в институте Оствальда в Лейпциге, а ...
... , форменных элементов (эритроциты, лейкоциты, тромбоциты и др.) существенно повышают восприимчивость и чувствительность жидких сред организма к внешнему воздействию различных физических факторов, в том числе низкоэнергетического лазерного излучения. В биологических жидкостях имеются специфические фотоакцепторы, реагирующие на лазерное излучение определенной длины волны. Кроме того, энергетической ...
... находятся в стадии разработки, и возможно, в скором времени могут быть применены для обработки изделий ювелирной промышленности. Поэтому я постараюсь рассмотреть все возможные варианты применения лазеров в технологических процессах ювелирной промышленности. Пробивка отверстий в камнях. Одним из первых применений лазеров была пробивка отверстий в часовых камнях. Сверление отверстий всегда было ...
... электродов из разных стекол в растворах электролитов и его теоретического осмысления автором был предложен метод изучения элементов структуры стекла по типу комплексных ионов, таких, например, как [AlO4/2]1 - , [BO4/2]1 - [7]. Позже ионообменные процессы нашли широкое применение в градиентной оптике, в производстве стеклянных электродов и в производстве рН-метров, которые можно встретить на ...
0 комментариев