2. Хлорорганические пестициды в продуктах питания и методы их определения

Молоко – объект индикации токсической нагрузки хлорорганических пестицидов на человека

Применение персистентных пестицидов в качестве химических средств защиты растений от вредных организмов на культурах полевого севооборота, как правило, приводит к накоплению токсичных остатков действующих веществ и продуктов их деградации в почве обработанных полей, последующей миграции в объекты окружающей среды, и вторичному поступлению их в растения полевых культур, что обусловливает содержание остаточных количеств пестицидов в готовой сельскохозяйственной продукции [1, 2].

Товарная часть растениеводческой продукции используется человеком как готовые пищевые продукты и как сырье для их изготовления, а побочная – в качестве зеленых кормов, силосной массы для домашних животных. Потребление животными кормов, содержащих остатки персистентных пестицидов, а человеком загрязненных пищевых продуктов растительного и животного происхождения является основным путем поступления токсичных веществ в его организм.

При длительном поступлении остатков пестицидов с пищевыми продуктами в организм человека или кормами в организм животного токсичные вещества постепенно накапливаются в них и оказывают отрицательное воздействие на разные функциональные системы организмов, вызывая нарушения в их работе. Очищение от вредных веществ осуществляется путем метаболического превращения токсикантов до более подвижных в тканях соединений, способных легче исходных веществ выводиться из организма. Процесс выведения вредных действующих веществ и метаболитов пестицидов из организма теплокровных с биологическими жидкостями и фекальными массами очень продолжителен, а его интенсивность в большой мере связана со степенью токсической нагрузки ксенобиотиков на человека или животное [3].

Индикатором степени и качества токсической нагрузки пестицидов на человека и домашних животных, живущих в определенном сельскохозяйственном регионе, могут служить уровни содержания этих пестицидов в молоке человека и теплокровных животных. Однако наиболее удобным и доступным индикатором воздействия пестицидов на организмы можно считать молоко рогатого скота, в первую очередь – коровье. Большим достоинством данного объекта индикации токсической нагрузки является неограниченность возможности отбора биоматериала и бездефицитность объемов, необходимых для проведения санитарно-гигиенических исследований, поскольку стада рогатого скота имеются почти в каждом хозяйстве разных сельскохозяйственных регионов.

Цельное коровье молоко, и приготовленные из него молочные продукты, являются важным компонентом пищевого рациона человека. Поэтому содержание в молочных продуктах вредных веществ (например, п, п'-ДДТ и его производные, изомеры ГХЦГ и др.) на уровнях, превышающих величину максимально допустимого уровня (МДУ), может стать причиной возникновения риска для здоровья населения. Среди разных возрастных групп населения, группой повышенного риска к воздействию хлорорганических пестицидов (ХОП) и продуктов их превращения считаются дети, потребляющие больше молочных продуктов, чем взрослые. Особому риску подвергаются дети младшего и раннего возраста, для которых молоко и молочные продукты являются основной и незаменимой частью пищевого рациона. Уменьшить воздействие ХОП на население позволяет санитарно-гигиенический контроль за соблюдением МДУ остаточных количеств пестицидов в пищевых продуктах, предлагаемых потребителю.

Изучение уровней токсической нагрузки персистентных ХОП на крупный рогатый скот (КРС) и сельское население проводилось в начале 90-х годов в одном из хозяйств Киевской области. Исследовались образцы цельного коровьего молока, а также местные зеленые корма и силос, изготовленный из зеленой массы растений, возделывавшихся в хозяйстве культур. Указанные образцы отбирались на фермах хозяйства в разное время года и исследовались на содержания остаточных количеств инсектицидов ДДТ и ГХЦГ, то есть их действующих веществ и продуктов превращения (п, п'- и о, п'-ДДТ, п, п'- и о, п'-ДДЭ, п, п'- и о, п'-ДДД; -, -, -, - изомеры ГХЦГ). Измерения массовой доли ХОП в исследовавшихся образцах выполнялись методом газожидкостной хроматографии на двух видах набивных колонок с использованием электроннозахватного детектора. Для селективного количественного анализа многокомпонентной смеси производных п, п'-ДДТ и изомеров ГХЦГ использовались стеклянные набивные колонки размером 1000x3 и 2000x3 мм, соответственно заполненные сорбентами Хроматон N-AW-DMCS (0,16–0,20 мм) с 5% неподвижной фазы SE-30 и Хроматон N-AW-HMCS (0,125–0,160 мм) со смесью неподвижных фаз 1,5% OV-17 + 1,95% QF-1 [4].

Надежность идентификации соединений ХОП, обнаруженных методом ГЖХ, подтверждена и другими хроматографическими методами (ВЭЖХ, ТСХ).

Наблюдения за содержанием ХОП в молоке, отбиравшегося в летний период в течение двух лет на фермах из холодильных установок, показали, что суммарные количества п, п'-ДДТ и его производных, а также суммарные количества изомеров ГХЦГ в исследовавшихся образцах, в основном, были ниже МДУ для молока и молочных продуктов, потребляемых населением (0,05 мг/кг), а также предназначенных для детского питания (табл. 1). Только в одном случае уровень суммарного содержания п, п'-ДДТ и его производных достигал МДУ, установленного для молочных продуктов детского питания (0,01 мг/кг) [5, 7–9]. Основными остатками ХОП в коровьем молоке являлись п, п'-ДДЭ – метаболит п, п'-ДДТ и -изомер ГХЦГ.

Из данных таблицы 1 видно, что уровни содержания ХОП в молоке в разное время отбора проб несколько отличались. Это могло быть связано как с изменением условий содержания животных (стойловый или пастбищный режим содержания) в разные периоды года, так и особенностями кормового рациона. Например, при скармливании коровам сена и частичном докорме силосом (апрель) или при переходе на пастбищный выпас (июнь, июль) уровень содержания п, п'-ДДТ и его производных в молоке заметно увеличивался, а при введении в рацион зеленой массы сельскохозяйственных культур (сентябрь, ноябрь) – снижался.

Суммарное содержание изомеров ГХЦГ в молоке увеличивалось в тех случаях, когда кормовой рацион КРС большей частью состоял из зеленых кормов (июль, ноябрь), выращенных на обработанных инсектицидом полях (табл. 2). При скармливании животным, в основном, сена и небольшого количества силоса, а также при выпасе на пастбище (апрель, июнь), загрязнение молока изомерами ГХЦГ уменьшалось.

Нами рассчитаны уровни возможного суточного поступления ХОП в организм человека с учетом нормы суточного потребления населением молока и молочных продуктов (в пересчете на молоко), составляющей 1,225 кг/сут [6]. Суммарное суточное поступление изомеров ГХЦГ колебалось от 0,001 до 0,007 мг/сут, а суммарное суточное поступление п, п'-ДДТ и его производных – в пределах от 0,003 до 0,01 мг/сут. Установленные уровни не превышали МДУ (табл. 3).

В лаборатории экспертизы пищевых продуктов ежегодно осуществляется контроль за содержанием ХОП в продуктах растительного и животного происхождения, поступающих на прилавки продовольственных магазинов г. Киева. При проведении в 2002 году экспертных исследований молочной продукции установлено, что содержание остаточных количеств ХОП не превышало МДУ для молока и молочных продуктов (в пересчете на молоко) для взрослого и детского контингента населения.

В число молочных продуктов, исследуемых на содержание п, п'-ДДТ и его производных, а также изомеров ГХЦГ, входили: твердые и плавленые сыры, сметана, творог, сырковая масса и другие виды молочной продукции (табл. 4).

Остатки ХОП в молочных продуктах, прошедших санитарно-гигиенический контроль в 2002 году, обнаруживались, в основном, в виде п, п'-ДДЭ-метаболита п, п'-ДДТ и -изомера ГХЦГ.

На основании данных таблицы 4 проведен расчет возможного суточного поступления ХОП в организм человека, с молоком и молочными продуктами, поступавшими на прилавки г. Киева (табл. 5).

Согласно данным таблицы 5, суточное поступление суммарного количества изомеров ГХЦГ в организм человека с молочными продуктами в 2002 году составляло от 0,0001 до 0,0007 мг/сут, а суммарного количества п, п'-ДДТ и его производных – 0,0005–0,0028 мг/сут.

Сравнивая уровни суточного поступления ХОП в организм человека с молоком и молочными продуктами, установленные нами в начале 90-х годов, с уровнями, выявленными в 2002 году, видно, что суточное поступление изомеров ГХЦГ и производных п, п'-ДДТ с молоком в организм человека уменьшилось в 10 и 4–6 раз соответственно.

Таким образом, количественное содержание изомеров ГХЦГ и производных п, п'-ДДТ в молоке КРС отражает процесс постепенного снижения степени загрязнения объектов окружающей среды остатками инсектицидов и одновременно является индикатором возможной токсической нагрузки ХОП на животных и человека.

Таблица 1. Уровни содержания ХОП в молоке коров (средние показатели по трем стадам хозяйства), 1990–1991 гг.

Время отбора проб молока (месяц)

Сумма изомеров ГХЦГ (мг/кг)

Сумма производных п, п'-ДДТ (мг/кг)

 

Июнь

0,0011
(0,0006–0,0017)

0,0037
(0,0024–0,0057)

 

Сентябрь

0,0015
(0,0012–0,0029)

0,0030
(0,0024–0,0057)

 

Ноябрь

0,0021
(0,0019–0,0029)

0,0020
(0,0023–0,0042)

 

Апрель

0,0014
(0,0010–0,0023)

0,0109
(0,0030–0,0274)

 

Июль

0,0054
(0,0027–0,0090)

0,0051
(0,0022–0,0071)

 

Сентябрь

0,0013
(0,0010–0,0017)

0,0025
(0,0020–0,0031)

 

Таблица 2. Уровни содержания ХОП в зеленых кормах и силосе (1990–1991 гг.)

Вид корма

Сумма изомеров ГХЦГ (мг/кг)

Сумма производных п, п'-ДДТ (мг/кг)

Зеленая масса:
кукурузы

0,0012
(0,0006–0,0026)

0,0062
(0,0027–0,0286)

сахарной свеклы

0,0020
(0,0010–0,0029)

0,0045
(0,0020–0,0097)

Силос:
из ботвы сахарной свеклы

0,0035
(0,0032–0,0046)

0,0043
(0,0039–0,0062)

из зеленой массы кукурузы

0,0059
(0,0037–0,0078)

0,0042
(0,0031–0,0059)

из зеленой массы гречихи

0,0096
(0,0081–0,0118)

0,0021
(0,0015–0,0036)

Таблица 3. Уровни возможного суточного поступления ХОП в организм сельского жителя с молоком и молочными продуктами (в пересчете на молоко), 1990–1991 гг.

Время отбора проб молока (месяц)

Сумма изомеров ГХЦГ (мг/кг)

Сумма производных п, п'-ДДТ (мг/кг)

Июнь 0,0014 0,0045
Сентябрь 0,0018 0,0037
Ноябрь 0,0026 0,0025
Апрель 0,0017 0,0134
Июль 0,0066 0,0062
Сентябрь 0,0016 0,0031

Таблица 4. Уровни содержания ХОП в молочных продуктах в пересчете на молоко (2002 г.)

Пробы молочных продуктов

Сумма изомеров ГХЦГ (мг/кг)

Сумма производных п, п'-ДДТ (мг/кг)

Сыры:
твердые

0,0006
(0,0002–0,0008)

0,0022
(0,0012–0,0024)

плавленые

0,0004
(0,0003–0,0005)

0,0023
(0,0019–0,0024)

Сметана

0,0003
(0,0002–0,0004)

0,0011
(0,0009–0,0012)

Сырковая масса

0,0002
(0,0001–0,0002)

0,0006
(0,0005–0,0007)

Творог

0,0001
(<0,0001–0,0002)

0,0004
(0,0002–0,0005)

Кисломолочные продукты <0,0001

0,0004
(0,0003–0,0005)

Таблица 5. Уровни возможного суточного поступления ХОП в организм человека с молоком и молочными продуктами (в пересчете на молоко), г. Киев, 2002 г.

Пробы молочных продуктов

Сумма изомеров ГХЦГ (мг/кг)

Сумма производных п, п'-ДДТ (мг/кг)

Сыры:

твердые

0,0007 0,0027
плавленые 0,0005 0,0028
Сметана 0,0004 0,0014
Сырковая масса 0,0003 0,0007
Творог 0,0001 0,0005
Кисломолочные продукты 0,0001 0,0005

«Вольтамперометрический комплекс ИВА-5 для мониторинга элементов – токсикантов в воде и пищевых продуктах» [10]

Контроль содержания токсичных металлов на уровне предельно-допустимых концентраций в природных, питьевых, сточных водах, продуктах питания и продовольственном сырье является важной проблемой, решение которой требует создания новых средств измерения и экспрессных, надежных методов анализа. Метод инверсионной вольтамперометрии, реализованный с использованием графитовых толстопленочных модифицированных электродов, обладает высокой чувствительностью и селективностью, низким влиянием матрицы и простотой в выполнении, легко автоматизируется. Это послужило основой при разработке лабораторного вольтамперометрического комплекса «ИВА-5».

Комплекс включает: электронный блок, электрохимический датчик, программное обеспечение, методическое обеспечение. Электронный блок позволяет в автоматическом режиме выполнять стадии накопления определяемого компонента на рабочем электроде, регистрации и измерения полезного сигнала и регенерации поверхности рабочего графитового электрода. Электрохимический блок связан через коллектор с электронным блоком и включает магнитную мешалку, электрохимическую ячейку, электроды. Индикаторным электродом является уникальный твердофазный графитсодержащий сенсор. Его преимущества перед российскими и зарубежными аналогами: экологическая безопасность; электрохимическая регенерация в процессе анализа; высокая чувствительность и селективность; широкий спектр определяемых элементов, простота и низкая стоимость. Различные варианты этого сенсора запатентованы. Программное обеспечение работает в операционной среде Windows в интерактивном режиме. Программа задает значения всех входных параметров, необходимых для выполнения анализа, обеспечивает математическую обработку аналитических сигналов, расчет концентрации определяемых веществ. Полученные экспериментальные данные могут быть выведены на печать в виде стандартного протокола или помещены в буфер обмена для передачи другим приложениям. Методическое обеспечение комплекса ИВА-5 включает метрологически аттестованные методики измерения концентраций меди, свинца, кадмия, цинка, никеля, хрома, молибдена, марганца, мышьяка, олова и ртути в диапазоне 0,01–10 000 мкг/л.

Лабораторный аналитический комплекс «ИВА-5» включен в Госреестр средств измерений (сертификат №9953) и рекомендован к применению Федеральным государственным центром экологического контроля и анализа Министерства природных ресурсов России.

Пестициды группы хлорфеноксикарбоновых кислот

Применение капиллярного электрофореза

Применение пестицидов было и остается одним из основных путей интенсификации сельскохозяйственного производства. Однако, будучи чужеродными химическими веществами, вносимыми в окружающую среду, пестициды могут представлять собой известную опасность для природы и человека. Многие пестициды способны длительно сохраняться в среде обитания людей, попадая из одного объекта среды в другой и превращаясь в более токсичные соединения. Согласно мировой экологической статистике пестициды входят в группу экотоксикантов, составляющих так называемую «грязную дюжину» [1].

В качестве гербицидов наибольшее распространение получили хлорфеноксикарбоновые кислоты (ФКК) и их производные. Ввиду отсутствия приемлемых альтернативных способов борьбы с сорняками производство и потребление пестицидов этой группы продолжает возрастать. Общая формула для соединений группы хлорфеноксикарбоновых кислот.

Известно влияние заместителей R1 и R2 на гербицидную активность этих соединений. В общем случае возрастание активности происходит при R=Hal, причем максимум гербицидной активности наблюдается при наличии в бензольном кольце двух атомов хлора, при дальнейшем росте числа атомов Hal гербицидная активность снижается. Таким образом, соединения группы 2,4 – дихлорфеноксикарбоновых кислот являются самыми активными гербицидами и, следовательно, наиболее широко используются. Активному распространению соединений группы 2,4 – Д способствует также наличие у отдельных ее представителей (2,4 – Д, 2,4 – ДМ, 2М-4ХП) гормональных свойств: применение препаратов, содержащих указанные гербициды, ведет к интенсификации биосинтеза белка, стимулированию корнеобразования и ускорению дозревания плодов [2].

Наиболее распространенные пестициды группы ФКК и их ПДК в водных объектах представлены в табл. 1.

 

Таблица 1. Перечень наиболее распространенных пестицидов группы ФКК и их ПДК в объектах окружающей среды

Название

Синоним или краткое обозначение

ПДК, мг/л

Кислота феноксиуксусная

ФУК

1 (питьевая вода)

Кислота 2,4 – дихлорфеноксиуксусная

2,4 – Д

0,03 (питьевая вода)
1 (природная)

Кислота 2-метил-4 хлорфеноксиуксусная

2М-4Х, МСРА

0,02 (воды рыбохоз. водоемов)
0,04 (сан-быт.)

Кислота 2,4,5 – трихлорфеноксиуксусная

2,4,5 – Т

Запрещена к применению!

Кислота 2,4 – дихлорфенокси-α-пропионовая

Дихлорпроп, 2,4 – ДР

0,5 (питьевая)
0,62 (природная)

Кислота 2-метил-4-хлорфенокси-α-пропионовая

Мекопроп, 2М-4ХП, МСРР

Кислота 2,4,5 – трихлорфенокси-α-пропионовая

2,4,5 – ТР, Silvex

Кислота 2,4 – дихлорфенокси-α-масляная

2,4 – ДВ

0,01 (питьевая)

 

В народном хозяйстве представители ФКК применяются в качестве гербицидов (для борьбы с сорняками), арборицидов (для уничтожения малоценных пород кустарников), альгицидов (для уничтожения водных растений при зарастании водоемов). Попадая в различные объекты окружающей среды, пестициды накапливаются в них либо включаются в различные миграционные цепи (рис. 1). При этом в каждом из объектов окружающей среды пестициды подвергаются всевозможным процессам разложения. ФКК характеризуются сравнительно низкой персистентностью – способностью сохраняться какое-либо время в окружающей среде, не теряя своей биологической активности, и, например, в почве подвержены каталитическим процессам разложения с участием микроорганизмов и ферментов: деалкилированию, дегалогенированию, гидролизу, разрыву кольца и т.д. с образованием в конечном итоге 2,4 – Д и 2,4 – ДХФ (2,4 – дихлорфенола), более стабильных, чем исходные соединения. Обладая хорошей растворимостью в воде, продукты разложения вымываются из почвы и поступают в грунтовые воды, а затем в открытые водные объекты.

Кроме того, в водные объекты ФКК могут поступать как при непосредственном внесении ядохимикатов в водоемы (в качестве альгицидов), так и со стоками химических и родственных производств. В водных объектах ФКК также претерпевают разложение до 2,4 – Д и 2,4 – ДХФ [3].

Стабильность 2,4 – Д в различных объектах отражена в табл. 2 и зависит как от физико-химических свойств вещества, так и биологической природы среды, температуры, влажности, УФ-радиации и т.д.

Таблица 2. Стабильность 2,4 – дихлорфеноксиуксусной кислоты
в объектах окружающей среды.

Объект среды

Максимальная стабильность
препарата, сутки

Почва

300–500

Растительные материалы

120–180

Водные организмы

100–150

Водная среда

120

 

О распределении 2,4 – Д в водных объектах имеются противоречивые данные. Учитывая коэффициенты распределения пестицида между отдельными компонентами биосферы, в [4] было показано, что наибольшая доля 2,4 – Д накапливается в воде (93,8%), а в [3] продемонстрировано распределение 2,4 – Д при поступлении в воду: основная доля (60%) метаболизируется в растительном материале в виде конъюгатов, незначительная часть (5–10%) адсорбируется донными осадками, песком и 30% остается в воде.

Экологическая безопасность пестицидов связана с их избирательностью, а также большей или меньшей персистентностью. Класс ФКК относится к среднетоксичным соединениям, значительно уступая по токсичности, например, группе хлорорганических пестицидов. Тем не менее ряд представителей ФКК обладают отдаленным токсическим действием: так у 2,4,5 – Т выражено эмбриотропное действие и этот препарат запрещен к применению в России.

Будучи ксенобиотиками, вносимыми в окружающую среду, пестициды представляют собой несомненную опасность для природы и человека. Важную роль в предотвращении негативных последствий применения пестицидов играет контроль за содержанием их токсических остатков в объектах окружающей среды, растениеводческой продукции, кормах и продуктах питания. Наиболее широко для анализа пестицидов класса ФКК используют физико-химические методы и в первую очередь ГЖХ и ВЭЖХ, отличающиеся высокой селективностью и чувствительностью определения ФКК [5,6,7,8]. Однако кроме вышеуказанных достоинств методики имеют ряд недостатков. Так, например, используемые в ГЖХ-варианте дериватизирующие агенты представляют собой высокотоксичные соединения, а в ВЭЖХ-варианте известно мешающее влияние гуминовых кислот и связанные с этим дрейф базовой линии, трудности при идентификации и количественном определении. Кроме того, оба хроматографических метода анализа характеризуются сложностью аппаратурного оформления.

В гораздо меньшей степени для аналитического контроля различных объектов на содержание пестицидов используют фотометрические, электрохимические, иммуноферментные методы и методы биоиндикации [5,9]. Большинство указанных методов характеризуются длительностью пробоподготовки, использованием большого количества (и объемов) реактивов, некоторые требуют наличия дорогих специфических реагентов.

Относительно новым, экспрессным и достаточно чувствительным методом анализа пестицидов является капиллярный электрофорез [8,9]. ФКК в нейтральных и щелочных растворах диссоциируют с образованием органических анионов. Этот факт определяет самый простой вариант их анализа методом капиллярного электрофореза – так называемый зонный электрофорез, при котором компоненты пробы, введеной с входного конца кварцевого капилляра, разделяются в электрическом поле за счет их различных подвижностей и детектируются в виде дискретных зон индивидуальных компонентов. Необходимо отметить важность разделения и последующего определения не только самих ФКК, но и продуктов их деструкции, многие из которых также оказывают токсическое воздействие на окружающую среду и человека. Для ФКК таким сопутствующим компонентом является 2,4 – дихлорфенол (2,4 – ДХФ).

В качестве разделительной системы выбрана смесь приоритетных гербицидов (кислоты: феноксиуксусная, 2,4 – дихлорфеноксиуксусная (2,4 – Д), 2,4,5 – трихлорфеноксиуксусная, 2,4 – дихлорфенокси-α-пропионовая и 2,4 – дихлорфенокси-α-масляная) и конечного продукта их разложения (2,4 – дихлорфенол). Все компоненты обладают заметным поглощением в УФ-области. Работа выполнялась на приборе «Капель-103» (НПФ АП «Люмэкс»), с кадмиевой лампой (λраб 228,8 нм); длина используемого кварцевого капилляра 65 см (эффективная длина – 55 см); внутренний диаметр капилляра 75 мкм.

Оптимизировались следующие условия разделения ФКК методом зонного электрофореза:

·           Выбор ведущего электролита, оптимизация концентрации и рН.

·           Ввод пробы (гидродинамический, электрокинетический), оптимизация времени ввода для гидродинамического способа. Оценка способа ввода с выходного конца капилляра.

·           Рабочее напряжение.

·           Полярность прибора.


Литература

 

1. Тинсли И. Поведение химических загрязнителей в окружающей среде./ Пер. с англ. М.: Мир, 1992. – 281 с.

2. Давидюк Е.И. Эколого-гигиеническая оценка загрязнения объектов агробиоценоза некоторыми хлорорганическими пестицидами // Актуальні проблеми екогігієни і токсикології: Матеріали наук.-практ. конф. Київ, 28–29 травня, 1998. – К., 1998. – С. 79–82.

3. Лунев М.И. Пестициды и охрана агрофитоценозов. – М.: Колос, 1992. –267 с.

4. Методы определения микроколичеств пестицидов в продуктах питания, кормах и внешней среде: Справочник. Т. 1. – М.: Колос, 1992. –566 с.

5. Федорова Л.М., Белова Р.С. Производные хлорфеноксиуксусных кислот и охрана окружающей среды. Саратов: СГУ, 1983. – 124 с.

6. Прогнозирование поведения пестицидов в окружающей среде. Тр. Сов.-амер. симпоз. Ереван, октябрь 1981. Л.: Гидрометеоиздат, 1984. – 306 с.

7. Методы определения микроколичеств пестицидов в продуктах питания, кормах и внешней среде. М.: Колос, 1977. – 215 с.

8. Методы определения микроколичеств пестицидов в продуктах питания, кормах и внешней среде. М.: Колос, 1983. – 297 с.

9. Методика выполнения измерений массовой концентрации 2,4 – Д, симазина, атразина в питьевой воде, воде водоемов и водоисточников методом ВЭЖХ. Уфа, РБ.АП-31/96.

10. В.М. Камышов, Х.З. Брайнина, Л.Э. Стенина, О.В. Инжеватова. «Вольтамперометрический комплекс ИВА-5 для мониторинга элементов – токсикантов в воде и пищевых продуктах»


Информация о работе «Физико-химические методы определения остаточных концентраций хлорорганических пестицидов в продуктах питания»
Раздел: Экология
Количество знаков с пробелами: 38770
Количество таблиц: 8
Количество изображений: 0

Похожие работы

Скачать
85232
1
17

... . Сигнал детектора фиксируется регистратором (в виде пиков) и обрабатывается вычислительным интегратором. В ГХ используют детекторы, которые преобразуют в электрический сигнал изменения физических или физико-химических свойств газового потока, выходящего из колонки, по сравнению с чистым газом - носителем. Существует множество детекторов, однако широкое применение находят только те из них, ...

Скачать
79814
5
6

... и 2 чашек Петри, вставленных одна в другую для антикруговой ТСХ. Для увеличения пиковой емкости в ТСХ используют методы проточной, многократной, градиентной и двумерной ТСХ. [1] Глава 2. Контроль качества пищевых продуктов посредством метода ТСХ   2.1 Определение ддт, ддэ, ддд, альдрина, дильдрина, гептахлора, кельтана, метоксихлора, эфирсульфоната и других ядохимикатов в продуктах питания ...

Скачать
11824
2
3

... Наиболее распространенные пестициды группы ФКК и их ПДК в водных объектах представлены в табл.1. Таблица 1. Перечень наиболее распространенных пестицидов группы ФКК и их ПДК в объектах окружающей среды. Название Синоним или краткое обозначение ПДК, мг/л Кислота феноксиуксусная ФУК 1 (питьевая вода) Кислота 2,4-дихлорфеноксиуксусная 2,4-Д 0,03 (питьевая вода) 1 (природная) Кислота ...

Скачать
118647
2
3

... Метод широко используется для оценки санитарного и бактериологического состояния производственных помещений, оборудования, инвентаря, а также личной гигиены рабочих. 5. БИОЛОГИЧЕСКИЙ МЕТОД Биологический метод исследования рыбы и рыбопродукции применяют при определении степени перевариваемости продукта ферментами желудочно-кишечного тракта, установлении безвредности продукта и его усвояемости ...

0 комментариев


Наверх