1.1 Спектры поглощения
Спектром поглощения вещества называется совокупность коэффициентов поглощения, характеризующих его поглощательную способность к лучам оптического диапазона частот. Коэффициенты поглощения определяются из закона Ламберта—Бера.
Спектры поглощения люминесцирующих веществ крайне разнообразны. Одни из них имеют вид очень узких полос (растворы солей редкоземельных элементов), другие — более широких полос с четко выраженной колебательной структурой (растворы ураниловых солей), наконец, спектры поглощения многих веществ представляют собой широкие размытые полосы, структуру которых не удается выяснить даже при низких температурах (растворы красителей).
Спектры поглощения могут существенно меняться при изменении концентрации раствора, его кислотности или щелочности (величины его рН), природы растворителя, температуры и ряда других факторов.
Спектры люминесценции.
Спектром люминесценции называется распределение излучаемой веществом энергии по частотам или длинам волн. Подобно спектрам поглощения, интенсивность и форма спектров люминесценции у разных веществ могут быть весьма различными, и они могут существенно изменяться при вариации тех же параметров (концентрации, величины pH раствора и т. д.)
1.2 Выход люминесценции
Выход люминесценции характеризует эффективность трансформации возбуждающего света в свет люминесценции в исследуемом веществе. Различают энергетический и квантовый выходы люминесценции. Энергетическим выходом люминесценции называют отношение излучаемой веществом энергии Eл к поглощенной энергии возбуждения Еп:
(2)
Квантовым выходом люминесценции называют отношение числа квантов люминесценции, излученных веществом Nл к числу поглощенных квантов возбуждающего света Nп:
(3)
Выход люминесценции очень чувствителен к внешним воздействиям, которые во многих случаях приводят к тушению свечения. Так, известно тушение люминесценции посторонними примесями, возникающее при добавлении к раствору посторонних веществ — тушителей. Тушителями могут служить KI, анилин и другие вещества. В результате взаимодействия возбужденных молекул люминесцентного вещества с молекулами тушителя возникает безизлучательный размен энергии возбуждения. Безизлучательные переходы развиваются и при увеличении температуры раствора, обуславливая появление температурного тушения.
В большинстве случаев увеличение концентрации также приводит к тушению свечения. При этом концентрационное тушение обычно начинает проявляться лишь при достижении некоторой пороговой концентрации, величина которой характерна для исследуемого вещества. В более разведенных растворах выход люминесценции не зависит от концентрации. Это обстоятельство может быть использовано в люминесцентном анализе при подборе оптимальных условий его проведения.
Концентрационное тушение имеет двоякую природу. С одной стороны, при увеличении концентрации могут образовываться ассоциированные молекулы, не обладающие люминесцентной способностью, но поглощающие энергию возбуждения. С другой стороны, между возбужденными и невозбужденными молекулами может осуществляться индукционный перенос, или, как говорят, миграция энергии возбуждения. Такой перенос энергии возбуждения прежде всего на нелюминесцентные ассоциаты приводит к развитию концентрационного тушения.
Известны и другие виды тушения (тушение растворителем, тушение электролитами, тушение при диссоциации и ионизации молекул и т. д.). При проведении люминесцентного анализа интенсивность свечения играет очень большую роль. Поэтому учет тушения, изменяющего интенсивность люминесценции и затрудняющего анализ, является крайне важным.
Закон затухания люминесценции.
Закон затухания свечения после прекращения возбуждения может быть различным у разных веществ, что часто позволяет по нему определять природу и кинетику свечения; вместе с тем он может служить и аналитической характеристикой. Закон затухания свечения растворов и молекулярных кристаллов обычно достаточно хорошо выражается экспоненциальной зависимостью
(4).
где I — интенсивность свечения в момент времени t; I0 — интенсивность свечения в момент прекращения возбуждения; t — средняя длительность возбужденного состояния (время, в течение которого интенсивность свечения уменьшается в е раз, т. е. в 2,7 раза). В других случаях затухание свечения может происходить по более сложному закону. Так, например, затухание свечения кристаллофосфоров хорошо описывается эмпирической формулой
(5)
где A, b, a — постоянные, причем обычно a<2.
0 комментариев