1.1 Сочетание масс-спектрометрии с другими методами
Большие принципиальные возможности масс-спектрометрии появляются при сочетании её с другими методами. Сочетание методов значительно расширяет возможности каждого из них, позволяя получать больше информации об объекте исследования:
• Оказалось полезным двукратное, трехкратное, четырехкратное и т.д. разделение по массам в тандемных масс-спектрометрах. В таком приборе имеет место «очищение» масс-спектра благодаря дискриминации различных помех (от рассеяния ионов на остаточных газах, на стенках камеры и различных эффектов столкновения и перезарядки).
• Весьма эффективными, как для хроматографии, так и для масс-спектрометрии, оказались хромато-масс-спектрометры – одни из наиболее распространенных современных аналитических приборов. В них различные типы газовых, жидкостных или ионных хроматографов (электрофореза) обеспечивают предварительное разделение вещества, а индикацию разделенных веществ и измерение их содержаний осуществляет масс-спектрометр. Поэтому масс-спектрометры в хромато-масс-спектрометрах большей частью имеют дело не со смесью соединений, а с индивидуальными соединениями, на короткое время поступающими в источник ионов.
• Очень полезной оказалась возможность практически одновременного (или попеременного) наблюдения массовых пиков с помощью масс-спектрометра и электромагнитного излучения – эмиссионным спектрометром. В таких «комплексных» приборах регистрируется электромагнитное излучение из масс-спектрометрических источников ионов с газовым разрядом (с индуктивно-связанной плазмой, тлеющим разрядом, искровым, дуговым, коронным).
• Весьма плодотворным, но далеко не в полной мере реализованным, оказалось совместное применение лазеров и масс-спектрометрии, которое может идти по двум – трем направлениям: применение лазеров в масс-спектрометрии, применение масс-спектрометрии для диагностики и изучения работы лазеров, масс-спектрометрический контроль работы установок по лазерному разделению изотопов.
• Некоторые методы физико-химического анализа применяют одинаковые узлы или схожи по ряду моментов действия. Например, источники с индуктивно связанной плазмой используются и в масс-спектрометрии, и в оптической эмиссионной спектроскопии, а «электронный зонд», дающий локальное рентгеновское излучение элементов в рентгено-флуоресцентном анализе, идейно и частично конструктивно схож с «ионным зондом» вторичной ионной масс-спектрометрии.
• В современных аналитических средствах весьма высок уровень интеграции различных элементов, блоков, устройств (система подачи проб, различные стабилизаторы напряжений и токов, операционные усилители, средства вычислительной техники и программного обеспечения, стандартные образцы). [6–9]
Применение масс – спектрометрии
Хромато-масс-спектрометры. ГХ и ЖХ системы. | Масс-спектрометры для анализа стабильных изотопов в газовой фазе | Термоионизационные масс-спектрометры | Масс-спектрометры с индуктивно-связанной плазмой |
Биохимия Протеомика Клиническая химия Косметика Допинги, наркотики Контроль окружающей среды Пищевые продукты Сельское хозяйство Криминалистика Органическая химия Парфюмерия и ароматизаторы Нефти Нефтехимия Фармацевтика Полимеры Токсикология | Сельское хозяйство Климатические исследования Клиническая химия Медицинская диагностика Пищевые продукты Ароматические вещества Алкогольные напитки Допинг контроль Геология Гидрология Петрография и минералогия Нефть Криминалистика | Геохронология Ядерная энергетика Контроль окружающей среды | Археология Косметика Экология Общая химия Металлургия Ядерная энергетика Геохимия Продукты питания Медицина и токсикология Фармацевтика Полупроводниковая промышленность Криминалистика Нефти и нефтепродукты |
1.2 Масс-спектрометры с двойной фокусировкой в масс-спектрометрии с индуктивно-связанной плазмой
Масс-спектрометрия с индуктивно-связанной плазмой (ICP/MS, ИСП/МС) развилась в один из наиболее успешных методов в атомной спектроскопии благодаря высокой чувствительности и возможности выполнения многоэлементного анализа. Тем не менее, с самых первых дней существования ИСП/МС Ахилесовой пятой этого метода было большое количество спектроскопических и неспектроскопических интерференций, которые лимитировали его аналитическтие достоинства.
Рассматривались многие методики понижения влияния этих интерференций, однако, ни одна из них не была способна решить проблему целиком. Все эти методики были ограничены воздействием на некоторые специфические интерференции или были приложимы только к ограниченному выбору элементов. Единственным общим методом преодоления ограничений, вызванных спектроскопическими интерференциями, является масс-спектрометрия высокого разрешения, которая с необходимостью требует использования приборов с двойной фокусировкой, комбинирующих магнитный и электростатический анализаторы. Этим определяется их основное отличие от приборов низкого разрешения, которые обходятся более дешевым и простым квадрупольным анализатором.
Хотя ИСП/МС приборы высокого разрешения появились на рынке аналитического оборудования с 1988 года, они не были широко приняты из-за их высокой стоимости. Относительно недавно цены на это оборудование значительно снизились с появлением приборов второго поколения. Великолепные характеристики этих приборов придали значительный импульс развитию аналитических приложений масс-спектрометрии высокого разрешения с индуктивно-связанной плазмой.
Спектроскопические интерференции
С момента начала использования индуктивно-связанной плазмы для элементного анализа, этот метод ионизации развился в самый успешный из всех используемых. В начале он использовался как метод возбуждения в сочетании с эмиссионной спектроскопией. В последние 15 лет он широко используется в качестве источника ионов для масс-спектрометрии. Определенные технические проблемы, связанные с отбором ионов из плазмы, были успешно решены и комбинация источника с индуктивно-связанной плазмой и масс-спектрометра начала широко распространяться.
В индуктивно-связанной плазме ионы генерируются при атмосферном давлении, в то время как масс-спектрометр работает при давлении меньше чем 10-5 мБар. Между ИСП и МС используется интерфейс в виде «узкого горла», с помощью которого вытягиваются ионы из плазмы и осуществляется перепад давлений. В начале развития ИСП/МС в каечтве интерфейса просто использовалось вытянутое носиком отверстие диаметром всего 50–70 мкм, охлаждаемое водой. Проблема, связанная с такой конструкцией заключалась в том, что холодные пограничные слои впереди конуса способствовали генерации большого количества посторонних ионов. Эту проблему удалось преодолеть путем увеличения диаметра входного отверстия до 1 мм, что отодвигало пограничные слои и ионы напрямую входили в масс-спектрометр из плазмы. Эта методика известна как непрерывный отбор образца и, следовательно, конус называется конус образца.
Поскольку поток газа через этот конус образца намного больше, чем было ранее при использовании отверстий с меньшим диаметром, давление следует понижать путем использования дифференциальной вакуумной откачки в две или более стадий. По этой причине на пути потока газа был установлен второй конус и пространство между этим конусом и конусом образца откачивается форвакуумным насосом с высокой скоростью откачки. Поскольку существует большой перепад давлений между источником индуктивно-связанной плазмы и первой стадией откачки, ионы засасываются в в пространство интерфейса и ускоряются до сверхзвуковых скоростей.
Для того, чтобы избежать турбуленции на втором конусе, он выполняется с острыми краями для «срезания» (скимирования) ионов из сверхзвукового пучка и, следовательно, этот конус получил название «скимерный». Конструкция, состоящая из конуса образца и скимерного конуса с диаметрами около 1 мм получила название «интерфейс (рис. 1). Создание интерфейса означало прорыв в ИСП/МС технологии, обеспечивший более эффективную экстракцию ионов, улучшив пропускание ионов, а, следовательно, чувствительность метода, и снизив спектральные интерференции более чем на порядок по величине. Тем не менее, спектральные интерференции все еще оставались одним из главных ограничений метода элементного анализа.
Спектроскопические интерференции вызываются атомными или молекулярными ионами, имеющими такую же номинальную массу, что и изотоп анализируемого элемента. Результирующий интерферирующий сигнал может исказить или полностью перекрыть истиный аналитический сигнал, таким образом, точность определения, равно как и предел обнаружения элемента, значительно ухудшается. источников, из которых происходят интерференции, множество. До сих пор не существует общепринятой модели для объяснения всех факторов, вносящих свой вклад в интерференции, но тот факт, что интерфейс играет большую роль в появлении молекулярных интерференций, признается практически всеми.
Спектроскопические интерференции могут быть подразделены на изобарные атомные ионы, многозарядные ионы, наложения больших сигналов и полиатомные ионы различного происхождения. Изобарные наложения существуют вследствие того, что изотопы различных элементов совпадают по их номинальной массе. Для каждого элемента, за исключением индия, может быть найден по крайней мере один изотоп, свободный от изобарного наложения, но беда в том, что эти изотопы не являются наиболее интенсивными. Многозарядные ионы располагаются в масс-спектре в соответствии с значением m/z. Вклад в масс-спектр дают, главным образом, двухзарядные ионы основных компонентов матрицы и многозарядные ионы, образующиеся в процессах перезарядки с участием аргона. Сигналы соседних ионов с очень большой интенсивностью, например, происходящих от элементов матрицы, вносят значительные искажения в аналитический сигнал за счет наложения хвостов на соседние пики тогда, когда изотопическая чувствительность недостаточна. Полиатомные ионы могут состоять из атомов аргона и его примесей плюс компоненты растворителя и матрицы.
Из всех этих различных групп спектроскопических интерференций полиатомные ионы создают наиболее серьезные проблемы. Интерференции полиатомных ионов может вызываться самим анализируемым образцом. Например, оксиды могут остаться неразрушенными после прохождения через горячую зону плазмы вследствие того, что энергии разрыва их связей очень велики. Они могут быть внесены как примеси в процессах химической подготовки пробы или из газа плазмы и воздуха, захватываемого плазмой. В принципе, спектроскопические интерференции этого типа могут быть отделены от анализируемого изотопа при использовании масс-спектрометрии высокого разрешения.
Разрешение
Типичные примеры спектроскопических интерференций приведены в таблице 1. Один из наиболее дискутируемых примеров спектральной интерференции это 56Fe и 40Ar16O+. Последний ион происходит вследствие взаимодействия аргона с кислородом, содержащемся в растворителе. В этом примере в качестве альтернативы для измерения железа можно воспользоваться изотопами 54Fe, 57Fe и 58Fe, но на 58Fe накладывается изобарная интерференция от изотопа 58Ni. В тоже время существуют другие интерференции, такие как 40Ar14N+ или 40Ar16O1H+, что оставляет лучший альтернативный выбор за 57Fe. Однако, его природная распространенность всего 2.2% и предел обнаружения для данного элемента по этому изотопу при использовании прибора низкого разрешения очень плох. При этом, разрешение менее чем 2500 достаточно для того, чтобы отделить спектральные интерференции от анализируемого изотопа на массе m/z 56.
Еще более проблематичным является анализ 75As в том случае, когда хлор присутствует в анализируемом образце. Мышьяк является моноизотопным элементом, никакого альтернативного изотопа нельзя выбрать для проведения измерений, а необходимое для отстройки от интерференции разрешение должно быть увеличено до 7800, что реально лежит на верхнем коце шкалы разрешения, показанной в таблице 1. Однако, разрешение 3000 оказывается достаточным для того, чтобы освободиться от 90% случаев интерференций, вызванных полиатомными ионами. Коммерческие приборы высокого разрешения имеет максимальное разрешение в диапазоне от 7500 до 12,000, так что от большинства интерференций, приведенных в таблице 1 можно освободиться.
Тем не менее, высокое масс-спектральное разрешения не панацея от всех типов спектроскопических интерференций. Большинство изобарных интерференций не может быть разрешено с использованием коммерчески доступных приборов. Например, 58Fe, 58Ni и некоторые полиатомные соединения с аргоном, оксиды и гидриды требуют разрешения, которое лежит на самом пределе технически осуществимого сегодня или такого, которое вообще не может быть получено.
... . Комбинированные методы дают дополняющую друг друга информацию, позволяющую произвести правильную идентификации веществ, которые не могут быть опознаны с помощью какого- либо одного метода.[11-12] Глава 3. Примеры применения хроматографии в анализе объектов окружающей среды Анализ состояния водной среды с помощью метода газовой хроматографии[13-15] Метод газовой хроматографии для анализа ...
... psi Обработка данных и составление отчетов с помощью ПО Galaxie TMПриложение МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ. ИЗМЕРЕНИЕ МАССОВЫХ КОНЦЕНТРАЦИЙ АВЕРСЕКТИНА (СМЕСИ ИЗОМЕРОВ) В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ МЕТОДОМ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1. Подготовлены НИИ медицины труда РАМН (Макеева Л.Г., Муравьева Г.В.).2. Разработаны ООО НБЦ "Фармбиомед" (В.Т. Тер-Симонян, ...
... исследуется лишь суммарное содержание веществ либо число компонентов, не превышающее 3-5). Данные по процессам, идущим при биодеградации и фотолизе многокомпонентных (более 10-ти веществ) смесей полиароматических углеводородов отсутствуют как в отечественной так и зарубежной литературе. Резюмируя вышеперечисленное можно сказать, что сегодня в России и развитых зарубежных странах ведутся ...
... до молекулярного уровня, делая реальным полностью автоматизированные , со всеобъемлющим программным обеспечением, сложные многоцелевые и в то же время компактные, полностью автономные системы слежения за качеством окружающей среды в замкнутом пространстве. Экологические принципы, лежащие в основе конструирования,изготовления и эксплуатации ЛА. Самолет, как и любая система, использующая энергию ...
0 комментариев