2. Характеристика Семипалатинского ядерного полигона, находящегося на территории Павлодарской области
Бывший Семипалатинский испытательный ядерный полигон (СИЯП) расположен в северо-восточной части Казахстана, в степной и полупустынной зоне, с общей площадью 18500 кв. км. Полигон занимает площади Восточно-Казахстанской (54%), Павлодарской (39%) и Карагандинской (7%) областей. Периметр административной границы СИЯП - около 600 км [34 ,88 ].
Постановлением Правительства Республики Казахстан № 172 от 07.02.1996 года земли бывшего Семипалатинского испытательного ядерного полигона переведены в состав земель запаса: Карагандинской области – 131,7 тыс.га, Павлодарской – 706 тыс.га, Восточно-Казахстанской – 978,9 тыс.га.
Одной из первых задач в комплексе мер по организации проведения ядерных испытаний был выбор места для испытательного полигона. В Советском Союзе наиболее значимые военные полигоны размещались в Казахстане. Лучшего места в геофизическом отношении просто не возможно было найти. Так, в Казахской ССР 40% от общей ее площади составляли пустыни, 23% - полупустыни, 20% - степи, 7% - лесостепи и 10% - горы. Поэтому, естественно, на этот регион было обращено особое внимание.
Главное требование, которым руководствовались при выборе места для строительства испытательного ядерного полигона, заключалось в том, чтобы район был практически безлюдный, без сельскохозяйственных угодий и обширный по площади. Кроме того, этот район должен был иметь поблизости хотя бы минимум транспортных артерий, а также возможность обустройства на его территории местной взлетно-посадочной полосы для приема транспортных самолетов, поскольку предстояло кроме перевозки большого количества грузов наладить постоянно действующую оперативную связь. По предварительным расчетам диаметр необходимой для полигона территории должен был составлять не менее 200 км. После долгих поисков, с учетом главного требования, такой район был найден в степях Семипалатинской области Казахстана [35 , 61].
Место для ядерного полигона было выбрано в прииртышской степи, примерно в 140 км западнее г. Семипалатинска. Этот район Казахской ССР представлял и представляет в настоящее время безводную степь с редкими заброшенными и пересохшими колодцами. Юго-западная часть района является низкогорьем, на котором расположены горные массивы, расчлененные долинами и распадами. В восточной части района находится долина реки Чаган – левый приток реки Иртыш. В этой части расположены пересыхающие летом соленые мелководные озера.
Климат района континентальный. Главные его особенности – это засушливость с малоснежной холодной зимой и сравнительно коротким и жарким летом. Атмосферных осадков выпадает мало. Часто дуют сильные ветры. Зимой температура воздуха достигает – 400С, летом – превышает +300С. годовое количество осадков колеблется в пределах 200 – 300 мм, большая их часть выпадает летом. Высота снежного покрова 100 – 200 мм обусловливает незначительное количество талых вод и глубокое промерзание почвы (до 1,5 – 2 м). Зимой и осенью преобладают ветра юго-восточного направления со средней скоростью 4 – 5 м/с; для лета характерны ветра северного направления, бывают пыльные бури. В районе возможны частые перемены направления и скорости ветра, причем даже в течение одного дня [36 , 99].
Главной рекой района является р. Иртыш – крупнейший приток Оби, одна из важнейших судоходных рек Казахстана. Вторая по величине река района – левый приток Иртыша, река Чаган. Однако это река маловодная, ее ширина достигает 10 м на плесах, глубина до 2 м, вода в реке соленая, в наиболее засушливые годы пересыхает в конце лета. Все остальные небольшие реки – маловодны и летом практически полностью пересыхают.
В экономическом отношении район был развит довольно слабо. Населенные пункты, расположенные главным образом по долинам рек Иртыш и Чаган, были небольшие, сельского типа. Практически пустовавшая степь традиционно использовалась местными жителями, преимущественно казахами-кочевниками, для выпаса скота. По территории района были разбросаны временные летники и зимники. Площадка, которой предстояло стать испытательным комплексом полигона, представляла собой равнину диаметром примерно 20 км, окруженную с трех сторон – южной, западной и северной – невысокими горами. На востоке этой своеобразной долины находились небольшие холмы. Когда-то, в глубине веков, эта равнина была дном моря. К концу 40-х годов рядом с тем местом, которое стало Опытным полем полигона, осталось усыхавшее озеро с очень соленой водой.
На этой равнине в 1947 году было начато строительство испытательного ядерного полигона.
Испытательные площадки для проведения подземных ядерных взрывов
Подземные ядерные испытания с 11.10.1961 г. по 19.10.1989 г. проводились в основном на трех рабочих площадках полигона:
- площадка «Г» («Дегелен»). Ее общая площадь в границах горного массива Дегелен составляла 33100 га. Площадка использовалась для проведения подземных взрывов в штольнях (горизонтальных горных выработках);
- площадка «Б» («Балапан»), общая площадь которой была равна примерно 100000 га. Эта площадка использовалась для проведения подземных взрывов в скважинах;
- площадка «С» («Сары-Узень» и «Муржик») - вспомогательная площадка для проведения подземных взрывов в скважинах [37 ,44 ].
Схема расположения этих площадок на полигоне приведена на рисунке
Горный массив «Дегелен» использовался для испытаний в штольнях ядерных зарядов относительно небольшой мощности. Основной задачей этих испытаний являлось проведение облучательских экспериментов для решения вопросов материаловедения, определения радиационной стойкости материалов, изучения вопросов взаимодействия излучений с веществом, проверки работоспособности различных узлов специальных изделий.
Этот массив, в соответствии с проработками проектных институтов, обладал потенциальной возможностью проходки 180-200 штолен. Местоположение штолен представлено на рисунке 1. Последнее испытание на площадке «Дегелен» было проведено 04.10.1989 г. в штольне 169/2.
Рисунок 1 – Схема размещения испытательных площадок Семипалатинского полигона, предназначенных для проведения подземных ядерных испытаний
Научно-административным центром проведения подземных ядерных испытаний в штольнях горного массива «Дегелен» была площадка «Г», на которой размещались штабные помещения, производственные подразделения, гостиницы, казармы и т.д.
Горный массив Дегелен - это куполовидное поднятие размером в диаметре 17-18 км. Абсолютные вершины имеют различные формы: от острых гребневидных до круглых и плоских. Склоны изрезанны многочисленными распадками, в днищах которых часто наблюдаются русла временных водотоков. В геологическом отношении этот массив представляет собой крупный гранитный батолит. Гранитные породы распространены на 75-80% территории площадки Дегелен [38 ,54 ].
Рисунок 2 – Схема размещения штолен в горном массиве Дегелен (площадка «Г»
Условные обозначения: -( - портал штольни; ї - полость взрыва
Подземные воды находятся в зоне интенсивного выветривания скальных пород и, частично, в рыхлых отложениях четвертичного периода. Подземные воды в пределах всей площадки пресные и могут служить источником местного водоснабжения. Горный массив прорезан относительно неширокими долинами, имеющими сток воды в различных направлениях. Наибольшую площадь водосбора имеет долина ручья Узынбулак, текущего в юго-восточном направлении. В горах Дегелен берут начало поверхностные водные системы ручья Карабулак, имеющего сток преимущественно в северном направлении. В южном направлении текут ручьи Байтлес и Тахтакушук.
В гидрогеологическом отношении массив Дегелен представляет собой зону транзита атмосферных осадков, которые, просачиваясь по системе сопряженных трещин, образуют трещинные воды. Разломы субширотного и северного направлений способствуют наибольшему притоку подземных вод в штольни, достигающему 60 л/мин.
Площадка «Балапан», которая располагалась на левом берегу реки Чаган, была предназначена для проведения в скважинах ядерных взрывов мощностью до 100-200 кт. На этой площадке можно было подготовить большое количество боевых скважин при средней плотности одна скважина на 1 км2. Использовано было более 100 скважин, последний взрыв в одной из них был произведен 19.10.1989 г. перед закрытием полигона [39 , 11].
Испытательная площадка «Балапан» была расположена в среднем течении реки Чаган, занимала ее долину, древние ложбины и частично мелкосопочник. Рельеф площадки равнинный, плоский с общим незначительным уклоном на северо-восток. Преобладающие абсолютные отметки поверхности не превышают 300-330 м.
Горные породы представлены прослоями песчаников и алевритов, а также углисто-глинистых сланцев. Ниже залегают песчаники, алевриты, глинистые и углисто-глинистые сланцы с прослоями углей мощностью до 2 м. Гидрогеологические условия площадки характеризуются повсеместным развитием горизонта трещинных вод в зоне выветривания, глубина которой составляет 50-100 м. Ниже зоны выветривания подземные воды имеют распространение лишь в местах тектонических нарушений. Глубина залегания подземных вод обычно равна 5-15 м.
На площадке «Балапан» за все время подготовки и проведения испытаний было пройдено 118 скважин (вертикальных горных выработок), 10 из которых остались неиспользованными. Наиболее высокая плотность бурения скважин была в восточной и юго-восточной частях площадки.
В 1965 г. на этой площадке в месте слияния рек Чаган и Ащи-Су в результате выброса грунта при подземном ядерном взрыве мощностью 140 кт ТЭ было образовано искусственное водохранилище, названное местным населением «Атомное озеро» [40 , 33].
Рядом с площадкой «Балапан» и реакторным комплексом «Байкал» эксплуатируется угольное месторождение «Каражыра». Скважины, в которых проводились ядерные взрывы, находились на расстоянии 1-3 км от угольного месторождения, поэтому какой-либо опасности для угленосной структуры представлять не могли.
Следует отметить, что ядерные взрывы в скважинах оказали некоторое воздействие на формы рельефа земной коры. Вокруг большинства скважин образовались кольцевые структуры интенсивного коробления и другие деформации земной поверхности. В приустьевой части большинства скважин появились воронки проседания диаметром 10-30 м и глубиной до нескольких метров. На дне воронок, как правило, возникли небольшие озера с камышовыми зарослями. Наблюдаются также изменения фильтрационных характеристик водоносных горизонтов и физических свойств горных пород.
Вспомогательная площадка «Сары-Узень» в урочище Муржик, где были пройдены 22 скважины, имеет такие же геологические характеристики, как и площадка «Балапан». Сходными являются и гидрогеологические условия. В скважинах площадки «Сары-Узень» было проведено 21 подземное ядерное испытание.
Результаты изучения последствий проведения испытаний ядерного оружия на Семипалатинском полигоне имеют не только военно-научное, но и важное социально-политическое значение. В ходе ядерных испытаний на этом полигоне реализовывались не только программы по созданию и испытанию различных типов ядерного оружия, а также программы по изучению поражающего действия этого вида оружия и способов защиты от него. На полигоне из 32 наземных ядерных взрывов, произведенных Советским Союзом, было осуществлено 30, после которых на местности сформировались локальные радиоактивные следы с относительно высокой степенью загрязнения объектов окружающей среды биологически опасными радионуклидами. Это стало поводом для обращения Президента Республики Казахстан Н.А. Назарбаева к мировой общественности с просьбой об оказании помощи в ликвидации ущерба, нанесенного деятельностью полигона населению и окружающей среде Казахстана. На 19-й сессии Генеральной Ассамблеи ООН он сказал: «Казахстан предлагает материализовать ответственность ядерных держав в виде международного фонда восстановления здоровья людей и природы в районах, пострадавших от последствий ядерных испытаний...» [41, 1].
Нельзя отрицать, что испытания ядерного оружия на Семипалатинском полигоне стали причиной радиоактивного загрязнения не только территории самого полигона, но и территории за его пределами. Масштабы и степень такого загрязнения были различны и, как свидетельствуют приведенные ниже данные, в значительной степени зависели от вида и мощности ядерного взрыва.
В результате изучения радиационной обстановки после проведения ядерных испытаний на полигоне было установлено, что из всех видов взрывов (наземные, воздушные, подземные) наиболее сильное радиоактивное загрязнение внешней среды как на территории полигона, так и за ее пределами происходило после осуществления наземных ядерных взрывов. Обобщенные данные о количестве ядерных испытаний и их тротиловых эквивалентах, а также о количестве биологически опасных радионуклидов, выброшенных в атмосферу, приведены в табл. 8.
Таблица 8 - Основные характеристики ядерных испытаний, проведенных в 1949-1989 гг. на Семипалатинском полигоне
Вид испытания | Количество испытаний (взрывов) | Тротиловый эквивалент, Мт | Количество радионуклидов, выброшенных в атмосферу в период испытаний, МКи | ||
Cs - 137 | Sr - 90 | Рu - 239,240 | |||
Наземные | 30 | 0,6 | 0,056 | 0,035 | 0,006 |
Воздушные | 86 | 6,0 | 0,200 | 0,120 | 0,020 |
Подземные в том числе: в штольнях, в скважинах | 340 (500) 212 (307) 128 (193) | 11,1 | 0,020 | 0,010 | 0 |
ИТОГО | 456 (616) | 17,7 | 0,28 | 0,17 | 0,026 |
При подземных взрывах количество испытаний не равно числу взорванных ядерных зарядов, т.к. в одном испытании часто одновременно подрывалось несколько (до пяти) ядерных зарядов.
В общее количество подземных ядерных испытаний включено 7 испытаний (9 взрывов), осуществленных в интересах народного хозяйства для отработки технологических задач и самих промышленных зарядов с минимальным энерговыделением за счет реакции деления (до 5 %).[42 ,33].
Анализ закономерностей формирования радиоактивного загрязнения внешней среды после ядерных взрывов различных видов показал, что распределение радиоактивных веществ в разных средах при осуществлении воздушных и наземных взрывов значительно отличается. Так, после наземных ядерных взрывов основная доля радиоактивных веществ выпадает в районе воронки взрыва и на ближнем (локальном) следе, образуя сильное радиоактивное загрязнение внешней среды и значительные дозы излучения на местности. Радиоактивное загрязнение местности после воздушных и особенно после высоких воздушных взрывов большой мощности связано главным образом с полуглобальным и глобальным выпадением радиоактивных веществ практически на всей территории Северного полушария Земли.В таблице 9 представлены параметры всех произведенных на Семипалатинском полигоне наземных ядерных взрывов.
Таблица 9 - Хронология и параметры наземных ядерных взрывов, осуществленных на Семипалатинском полигоне
№ п/п | Дата проведения | Энерговыде- ление (ТЭ), кт | Высота взрыва,м | Количество биологически значимых радионуклидов, выброшенных в атмосферу, Ки | ||
90Sr | 137Сs | 239,240Pu | ||||
1 | 29.08.1949 г. | 22 | 30 | 1500 | 4200 | 360 |
2 | 24.09.1951 г. | 38 | 30 | 2700 | 7500 | 300 |
3 | 12.08.1953 г. | 400 | 30 | 22000 | 29000 | 280 |
4 | 05.10.1954 г. | 4 | 0 | 300 | 840 | 105 |
5 | 19.10.1954 г. | 0 | 15 | 0 | 0 | 215 |
6 | 30.10.1954 г. | 10 | 50 | 750 | 2100 | 100 |
7 | 29.07.1955 г. | 1.3 | 2.5 | 120 | 300 | 245 |
8 | 02.08.1955 г. | 11.5 | 2.5 | 1050 | 1800 | 200 |
9 | 05.08.1955 г. | 1.2 | 1.5 | 105 | 180 | 215 |
10 | 21.09.1955 г. | 1.2 | 1.5 | 105 | 180 | 215 |
11 | 16.03.1956 г. | 13.2 | 0.4 | 1600 | 2500 | 240 |
12 | 25.03.1956 г. | 5.5 | 1 | 360 | 600 | 190 |
13 | 24.08.1956 г. | 26.5 | 100 | 2200 | 3800 | 90 |
14 | 09.09.1961 г. | 0.4 | 0 | 42 | 70 | 225 |
15 | 14.09.1961 г. | 0.4 | 0 | 42 | 70 | 250 |
16 | 18.09.1961 г. | 0.004 | 1 | - | - | 250 |
17 | 19.09.1961 г. | 0.003 | 0 | - | - | 250 |
18 | 03.11.1961 г. | 0 | 0 | - | - | 230 |
19 | 04.11.1961 г. | 0.15 | 0 | 11 | 19 | 195 |
20 | 07.08.1962 г. | 10 | 0 | 930 | 1600 | 200 |
21 | 22.09.1962 г. | 0.2 | 0 | 17 | 29 | 280 |
22 | 25.09.1962 г. | 7 | 0 | 650 | 1100 | 205 |
23 | 05.11.1962 г. | 0.4 | 15 | 40 | 70 | 190 |
24 | 11.11.1962 г. | 0.1 | 8 | 8 | 13 | 210 |
25 | 13.11.1962 г. | 0 | 0 | - | - | 210 |
26 | 24.11.1962 г. | 0 | 0 | - | - | 140 |
27 | 26.11.1962 г. | 0.03 | 0 | - | - | 210 |
28 | 23.12.1962 г. | 0 | 0 | - | - | 210 |
29 | 24.12.1962 г. | 0.007 | 0 | - | - | 250 |
30 | 24.12.1962 г. | 0.03 | 0 | - | - | 295 |
Примечание: 1 Ки = 3,7*1010 Бк (беккерелей)
К ядерным взрывам, обусловившим наиболее значительное загрязнение внешней среды и дозы облучения населения выше установленных пределов, следует отнести 4 наземных ядерных взрыва, осуществленных 29.08.49 г., 24.09.51 г., 12.08.53 г. и 24.08.56 г. Это были основные дозообразующие взрывы. Остальные имели либо очень малую мощность, либо были проведены при метеоусловиях, приводящих к выпадению осадков, локализованных на территории полигона. После каждого ядерного испытания специалистами службы безопасности полигона производился дозиметрический контроль дозы, используя воздушные и наземные средства измерения. На основе данных, полученных в ходе таких радиационных разведок, прогнозировалась радиационная обстановка в ближней и дальней зонах на следах ядерных взрывов и проводились оценки доз внешнего и внутреннего облучения населения [43 , 42].
В 1959 г. сотрудниками Института биофизики Минздрава СССР и организаций других ведомств были обобщены все имеющиеся к тому времени материалы с результатами радиационных разведок и составлен первый альбом следов радиоактивного загрязнения территорий, прилегающих к Семипалатинскому полигону. К этому времени на полигоне было осуществлено 12 наземных и 37 воздушных ЯВ. В период с 04.11.1958 г. по 01.08.1961 г. ядерные испытания не проводились в связи с объявлением моратория [44 ,21 ].
В 1960, 1961 и 1963 гг. на полигоне было проведено 38 наземных гидроядерных экспериментов, которые отличались друг от друга количеством выброшенной в атмосферу альфа-активности и высотой подъема верхней кромки облака взрыва. При этом в отдельных экспериментах разница в величине выброса альфа-активности достигала 400 раз, а высота подъема облаков находилась в пределах от 250 м (эксперимент 01.10.1963 г.) до 1280 м (01.07.1961г.). Общее количество альфа-активности плутония, диспергированного во время гидроядерных экспериментов, составило примерно 800-900 кюри, что могло привести к радиоактивному загрязнению местности вокруг испытательной площадки [45 ,33 ].
По возобновлении испытаний было продолжено ведение радиационных разведок и изучение степени радиоактивного загрязнения объектов природной среды, что позволило получить новые сведения для уточнения положения локальных радиоактивных следов. На рис. 3 показано положение основных следов радиоактивного загрязнения, в пределах которых дозы внешнего облучения до полного распада радиоактивных веществ превышали 1 рентген (примерно 10 мГр). На этом рисунке видно, что следы практически не накладываются друг на друга, поэтому нет необходимости суммировать дозы излучения. При наложении следов от нескольких ядерных взрывов, произведенных в разное время, дозы можно суммировать. Так, над г. Курчатовым с 1953 г. до конца 1965 г. прошло 15 облаков, образовавшихся после атмосферных и подземных, произведенных с выбросом грунта ядерных взрывов. После одного из них, произведенного 07.08.1962 г., доза излучения на местности составила 38 мГр, а суммарная доза всех остальных составила 7 мГр. Облучение жителей г. Курчатова после взрыва 07.08.1962 г. можно считать аварийным, поскольку вместо планируемого воздушного произошел наземный взрыв. Однако суммарная доза облучения жителей этого города не превысила 50 мГр, что является допустимым пределом [46 , 20].
Следует отметить, что результаты анализа архивных материалов, содержащих данные радиационных разведок, а также сведения о радиоактивном загрязнении природной среды, полученные специалистами радиологических групп в лабораториях санэпидстанций МинздраваСССР и сети подразделений Госкомгидромета СССР, послужили основой для реконструкции положения радиоактивных следов ядерных взрывов, создания объективной базы данных о радиационной обстановке, а также для ретроспективной оценки доз облучения населения.
Рисунок 3 – Положение основных дозообразующих следов наземных ядерных взрывов, осуществленных на Семипалатинском полигоне, с указанием доз гамма-излучения на местности до полного распада радиоактивных веществ
Подземные ядерные испытания
Необходимо отметить, что радиоактивное загрязнение природной среды происходило не только после проведения ядерных испытаний в атмосфере, но и после подземных ядерных взрывов с выбросом грунта.
Подземные ядерные испытания на Семипалатинском полигоне проводились с 11.10.1961 г. по 19.10.1989 г. на трех его рабочих площадках:
- горный массив Дегелен (в штольнях),
- площадка Балапан (в скважинах),
- площадка Сары-Узень и Телькем (в скважинах) [47 , 7].
Всего на полигоне было осуществлено 340 подземных ядерных испытаний, в которых взорвано 500 ядерных зарядов. В мирных (промышленных) целях на этом полигоне было проведено 7 испытаний (2 - в штольнях и 5 - в скважинах), которые предназначались для решения широкого круга народнохозяйственных задач (создание водоемов, каналов, гаваней; устройство котлованов; стимуляция добычи нефти и газа; тушение факелов; сейсмическое зондирование земной коры и т.д.).
Наиболее значимое загрязнение окружающей среды за пределами территории полигона произошло после двух подземных ядерных взрывов с выбросом грунта - это взрывы, осуществленные 15.01.1965 г. в скважине 1004 и 14.10.1965 г. в скважине 1003. Максимальное загрязнение природной среды имело место после взрыва ядерного заряда мощностью 140 кт на глубине 178 м в скважине 1004. Целью этого эксперимента являлось создание искусственного водохранилища в засушливой степи путем перекрытия русла реки Чаган образованной взрывом насыпной плотиной в месте слияния рек Чаган и Ащи-Су [ 48, 41].
На Семипалатинском полигоне первое подземное испытание с тротиловым эквивалентом около 1 кт было проведено 11.10.1961 г. в штольне В-1. Основная цель этого испытания состояла в проверке расчетов и отработке технологий осуществления подземных ядерных взрывов с удержанием радиоактивных веществ в его полости. Таким образом, в СССР, в связи с разработкой проекта международного договора о запрещении ядерных испытаний в трех средах (в космосе, воздухе и воде), началась подготовка к проведению испытаний ядерного оружия (зарядов) под землей, т.е. в скважинах и штольнях.
Применительно к испытаниям ядерного оружия в недрах земли существует принципиальное различие в понятии «ядерное испытание» и «ядерный взрыв». Дело заключается в том, что в одном ядерном испытании под землей может осуществляться несколько ядерных взрывов. Поэтому количество ядерных испытаний часто не совпадало с числом ядерных взрывов. В соответствии с Московским договором 1963 г. и Протоколом к Договору между СССР и США об ограничении подземных испытаний ядерного оружия (1974 г.) термин «ядерное испытание» означал либо одиночный подземный ядерный взрыв, либо два или более подземных ядерных взрывов, произведенных в течение 0,1 секунды на полигоне в пределах района, ограниченного окружностью с диаметром два километра, при этом суммарная мощность всех взрывов являлась мощностью данного ядерного испытания. Например, на Семипалатинском полигоне в одном из испытаний было осуществлено одновременно пять ядерных взрывов [49,39 ].
Общее количество подземных ядерных испытаний вместе с ядерными взрывами в мирных целях, а также число ядерных зарядов и ядерных взрывных устройств, взорванных бывшим Советским Союзом в недрах земли, включая Семипалатинский полигон, представлено в таблицах 3 и 4.
Данные о количестве подземных испытаний и мирных ядерных взрывов, которые в разные годы осуществлялись на Семипалатинском полигоне, приведены в таблицах 3 и 4.
По характеру фактически наблюдаемой радиационной обстановки все подземные ядерные взрывы, осуществленные на Семипалатинском полигоне, подразделялись на четыре категории:
Взрыв с выбросом грунта (ВВГ) - подземный взрыв наружного действия, сопровождавшийся разрушением и перемещением пород в эпицентральной зоне и выходом радиоактивных продуктов в атмосферу в аэрозольной и газовой фазах. На земной поверхности образовывалась воронка (кратер) выброса. На полигоне было проведено четыре таких испытания в скважинах 1004 (15.01.1965 г.), 1003 (14.10.1965г.), Т-1 (21.10.1968г.) и Т-2 (три взрыва 12.11.1968г.) [50 , 22].
Таблица 10 - Количество подземных ядерных испытаний и подземных ядерных взрывов в СССР, 1961-1990 гг.
Место заложения зарядов | Количество подземных ядерных испытаний проведенных в СССР | |||
всего | в том числе на | |||
Семипалатинском испытательном полигоне | Северном испытательном полигоне Новая Земля | Вне территории полигонов | ||
В штольнях, | 245 | 209 | 33 | 3 |
(в т.ч. в мирных целях) | 5 | 2 | - | 3 |
В скважинах, | 251 | 131 | 6 | 114 |
{в т.ч. в мирных целях) | 119 | 5 | - | 114 |
ВСЕГО | 496 | 340 | 39 | 117 |
(в т.ч. в мирных целях) | 124 | 7 | - | 117 |
Таблица 11 - Количество ядерных зарядов и взрывных устройств, взорванных в СССР в недрах земли в 1961-1990 гг.
Место заложения зарядов | Количество ядерных зарядов и устройств, взорванных СССР в недрах земли | |||
всего | в том числе на | |||
Семипалатинском испытательном полигоне | Северном испытательном полигоне Новая Земля | Вне территории полигонов | ||
В штольнях, (в т.ч. в мирных целях) В скважинах, (в т.ч. в мирных целях) | 433 5 317 130 | 307 2 187 7 | 126 - 7 - | 3 3 123 123 |
ВСЕГО | 750 | 491 | 133 | 126 |
Взрыв камуфлетный полный (ВКП). При таком взрыве все радиоактивные продукты оставались в полости взрыва. Подобная радиационная ситуация наблюдалась после 50% взрывов из всех, осуществленных в период проведения подземных ядерных испытаний на Семипалатинском полигоне.
Взрыв неполного камуфлета, сопровождавшийся незначительным истечением в атмосферу радиоактивных инертных газов (ВНК-РИГ)- Подобные подземные испытания на Семипалатинском полигоне составляли 45% от их общего количества.
Взрыв неполного камуфлета с нештатной радиационной ситуацией (ВНК-НРС). Такой взрыв сопровождался ранним напорным истечением в атмосферу радиоактивных продуктов взрыва в газо- и парообразной фазах, что обусловливалось случайным нарушением нормального процесса проведения испытания и/или непредусмотренными проектом последствиями, которые могли привести/или приводили к облучению людей выше установленного уровня или к материальному ущербу. Взрывы ВНК-НРС могли привести к значительному аварийному облучению персонала и вследствие большого разбавления облака выброса по пути его движения за границы территории полигона – к очень незначительному облучению населения районов, прилегающих к полигону (ниже допустимых пределов по дозе).
При проведении мощных подземных ядерных взрывов в скважинах на площадках «Б» и «С» Семипалатинского полигона для исключения нарушений требований безопасности и Московского договора 1963 г. необходимо было выбирать такую глубину заложения ядерного заряда, которая обеспечивала бы возможность начала выхода радиоактивных газов в атмосферу не ранее, чем через 10 - 20 минут после взрыва. Только в этом случае среди вышедших в атмосферу газов мог практически отсутствовать радионуклид криптон-89 (период полураспада 3,07 минуты), из которого образуется биологически опасный радионуклид стронций-89, входящий в состав радиоактивных выпадений. Тем самым, даже после выхода части радиоактивных газов, обеспечивается отсутствие остаточного радиоактивного загрязнения местности и, следовательно, соблюдение правил радиационной безопасности [51 , 22].
При подземных ядерных взрывах в породах площадки «Б», содержащих относительно большое количество газообразных веществ, довольно часто наблюдалось истечение (фильтрация) в атмосферу радиоактивных газов по линии наименьшего сопротивления, то есть вдоль скважины. Причиной этого явления было возникновение значительного избыточного давления газов в полости ядерного взрыва. Большая часть газов образовывалась при испарении воды и сгорании горючих компонентов в прослойках сланцев и бурых углей. Кстати, после закрытия Семипалатинского полигона и передачи части его территории в использование для хозяйственных нужд вблизи площадки «Б» была начата промышленная добыча каменного угля.
По результатам экспериментального определения количества расплавленной породы, измерения размеров полости и установления способности горной породы к газообразованию стало возможным оценить величину избыточного давления в полости подземного взрыва к моменту окончания ее формирования.
Таблица 12 - Интенсивность подземных ядерных испытаний и мирных ядерных взрывов на Семипалатинском полигоне в течение 1961-1989 гг.
Годы | Количество испытаний | Тротиловый эквивалент, кт | Примечания |
1961 | 1 | 1 | |
1962 | 1 | 0,001-20 | |
1963 | - | - | |
С 01.01.1963 г. по 15.04.1964 г. ядерные испытания не проводились в связи с подготовкой Договора о запрещении испытаний в трех средах. | |||
1964 | 7 | 90 | Две нештатные радиационные ситуации (НРС). |
1965 | 12 | 250 | Включая два мирных ядерных взрыва (МЯВ) в скважинах 1004 и 1003. |
1966 | 14 | 420 | Одна НРС. |
1967 | 15 | 220 | Одна НРС. |
1968 | 14 | 120 | Включая МЯВ в скважине Т-1 и Т-2. Одна НРС. |
1969 | 14 | 270 | |
1970 | 12 | 150 | |
1971 | 15 | 300 | Включая МЯВ в штольне 148/1. Одна НРС. |
1972 | 14 | 450 | Две НРС. |
1973 | 9 | 310 | Одна НРС. |
1974 | 15 | 150 | Включая МЯВ в скважине Р-1 и в штольне 148/5. Две НРС. |
1975 | 12 | 210 | |
1976 | 16 | 300 | Одна НРС. |
1977 | 15 | 350 | |
1978 | 20 | 620 | |
1979 | 20 | 960 | |
1980 | 18 | 600 | Одна (последняя) НРС. |
1981 | 15 | 610 | |
1982 | 10 | 470 | |
1983 | 14 | 440 | |
1984 | 14 | 1130 | |
1985 | 8 | 45 | |
1986 | - | - | С 26.07.1985 г. по 26.02.1987 г. - мораторий на ядерные испытания. |
1987 | 16 | 1000 | |
1988 | 12 | 670 | |
1989 | 7 | 300 | |
итого | 340 | 11100 |
Оказалось, и это подтвердилось экспериментально, что при взрыве в граните с содержанием воды 0,5-1% по весу измеренное в полости давление было ниже атмосферного. При «газовости» пород 2-3% давление в полости взрыва становилось выше атмосферного, что могло быть причиной выхода в атмосферу радиоактивных газов. Фиксируя при подземных взрывах время начала выхода в атмосферу радиоактивных газов и зная другие необходимые параметры, специалисты научились количественно оценивать проницаемость пород, в которых производились подземные ядерные взрывы. В последующем эти знания позволили разработать методику прогноза радиационной обстановки после проведения подземных ядерных испытаний, что в значительной степени способствовало обеспечению радиационной безопасности участников испытаний [52, 33].
В период проведения подземных ядерных испытаний на Семипалатинском полигоне ставились не только военные задачи, связанные с усовершенствованием характеристик ядерных зарядов и устройств или разработкой мероприятий по обеспечению безопасности участников испытаний и населения, но и задачи мирного использования ядерных взрывов, такие как создание искусственных водоемов и каналов.
Обязательным требованием Московского договора 1963 г. было нераспространение радиоактивных продуктов подземных ядерных взрывов за пределы территории страны, которая проводила такие испытания. Следовательно, методика проведения подземных ядерных взрывов должна была разрабатываться как с учетом обеспечения радиационной безопасности персонала полигона и населения, так и с учетом требований Московского договора. Такой подход к проблеме требовал не только изучения закономерностей выхода (прорыва) радиоактивных продуктов взрывов в атмосферу в широком диапазоне условий их проведения, но и возможности эффективного регулирования выхода радиоактивных веществ в атмосферу при выполнении специальных требований, например, использования ядерных зарядов, при взрыве которых за счет реакций деления расщепляющихся материалов выделяется минимальная доля энергии. При этом необходимо было учитывать требования экономичности всех практических рекомендаций, обеспечивающих радиационную безопасность проведения подземных ядерных взрывов при реализации грандиозных проектов, которые разрабатывались в 60-80-е годы (переброс стока сибирских рек в южном направлении, создание искусственных водоемов, каналов, гаваней и т.д.). Кроме того, рассматривалась возможность использования подземных ядерных взрывов для решения широкого круга таких народнохозяйственных задач, как устройство котлованов при строительстве, стимуляция добычи нефти и газа, тушение факелов горящих газов и фонтанов нефти, сейсмическое зондирование земной коры в интересах поиска полезных ископаемых, создание подземных резервуаров и др [53 , 44].
Такой широкий круг задач требовал внимательного изучения радиационной обстановки после проведения подземных ядерных взрывов, поскольку предполагалось, что в районах взрывов будут проводиться различного рода работы, а сами взрывы будут проводиться вблизи населенных пунктов.
За время деятельности Семипалатинского полигона на его территории было осуществлено 7 подземных ядерных взрывов в промышленных целях. Проведены они были (по порядку) в скважинах 1004 и 1003, Т-1, Т-2, в штольне 148/1, в скважине Р-1 («Лазурит») и в штольне 148/5. Следует отметить, что радиоактивные следы после всех ядерных взрывов, за исключением первого мирного ядерного взрыва «Чаган» в скважине 1004, сформировались полностью в границах территории полигона, не представляя какой-либо опасности для населения, и в настоящее время остаточное радиоактивное загрязнение на этих следах отсутствует [54 , 5].
После взрыва «Чаган» в скважине 1004, который был произведен специально для образования искусственного водоема, остаточное загрязнение можно обнаружить и в настоящее время. Именно этот эксперимент показал, что вред, наносимый промышленными ядерными технологиями, в основе которых лежат подземные ядерные взрывы, может быть несоизмеримо больше их экономической выгоды. Но «гигантомания народнохозяйственных проектов СССР и отсутствие достаточно достоверных знаний относительно последствий подземных ядерных испытаний большой мощности, сделали возможным проведение эксперимента «Чаган» на полигоне.
Основные характеристики взрыва «Чаган» и особенности радиационной обстановки после взрыва
Первый опытно-промышленный эксперимент «Чаганї был проведен в целях получения информации о возможности использования подземных ядерных взрывов для образования глубоких воронок, а также чтобы оценить полезность, а, возможно, и необходимость применения ядерных зарядов для создания водохранилищ в засушливых районах страны. Он был осуществлен 15.01.1965 г. в месте слияния рек Чаган и Ащи-Су в урочище Балапан. Подготовка и проведение взрыва проводились по специальному проекту, содержавшему комплекс мероприятий по радиационной и сейсмической безопасности населения [ 55, 76].
Проектом, в создании которого принимали участие специалисты ряда ведущих институтов бывшего СССР, предполагалось образование воронки и радиоактивного облака взрыва в результате выброса грунта, а также формирование следа радиоактивного загрязнения.
Для обеспечения безопасности населения в секторе возможного формирования радиоактивного следа предполагалось создать несколько зон: зона отселения; зона оповещения и вывода людей и скота из построек на время прохождения сейсмической волны, а также контролируемая зона (санитарно-защитная зона и зона наблюдения). Из зоны наиболее сильного радиоактивного загрязнения предусматривалось временное отселение людей, чтобы снизить их дозовые нагрузки до величин, допускаемых санитарно-гигиеническими нормами. Внутренней, то есть ближней к эпицентру взрыва, границе зоны наблюдения (ЗН) соответствовало такое расстояние от взрыва, начиная с которого необходимость в проведении каких-либо ограничительных мероприятий для населения отсутствовала.
Установленные перед взрывом размеры зон уточнялись после его проведения и выполнения комплекса работ по определению реальной радиационной обстановки. Затем, основываясь на закономерностях снижения уровней радиационного воздействия, устанавливались сроки пересмотра и сокращения размеров зон, что давало возможность продолжать ведение обычной хозяйственной деятельности на территории, которая ранее была определена как санитарно-защитная зона.
В результате механического эффекта взрыва заложенного на глубине 178 м ядерного заряда мощностью 140 кт образовалась воронка глубиной 100 м, диаметром по гребню навала грунта 520 м и объемом примерно 6 млн. м3. Выброшенный из воронки грунт образовал земляной вал высотой 20-35 м, который перекрыл русло реки Чаган [56 ,33 ].
Заполнение воронки водой, согласно проекту, должно было происходить за счет весеннего паводка реки Чаган, для чего предусматривалось строительство канала. После проведения всех строительных работ образовалось два больших водоема: внутренний - в воронке и внешний - за счет заполнения водой поймы рек Чаган и Ащи-Су. Через два года в обоих водохранилищах появилась рыба (сорога, линь, сазан и др.), а воду из них местное население стало использовать для водопоя скота.
Необходимо отметить, что оценке радиационной обстановки на искусственно созданном объекте и на близлежащих к нему территориях уделялось большое внимание специалистами многих научных учреждений как при выполнении различного рода научных комплексных программ радиационных исследований (Ю.А. Израэль, С.И. Макерова, В.А. Логачев, В.Н. Петров, Ф.Я. Ровинский, В.Г. Рядов, А.А. Тер-Сааков, С.Л. Турапин и др.), так и различных частных программ радиоэкологических обследований, продолжавшихся в течение многих лет (Ю.В. Дубасов, К.И. Гордеев, В.М. Завьялов, А.Б. Иванов, А.С. Кривохатский, В.М. Лоборев, А.М. Матущенко, Л.Б. Прозоров, Е.Д. Стукин, Г.А. Шевченко, С.Г. Чухин и др.). Изучение радиоэкологического состояния этого объекта и местности вокруг него было продолжено в 90-е годы уже в рамках выполнения международных программ мониторинговых наблюдений (А.А. Искра, Ю.В. Дубасов, В.А. Логачев, А.М. Матущенко, С.Г. Смагулов, А.К. Чернышев и многие другие). В настоящее время мониторинг радиационной обстановки в районе озера Чаган или, как его называют, озера «Атомкуль» ведут специалисты Национального ядерного центра Республики Казахстан, который находится на территории г. Курчатова - бывшего административно-научного центра уже несуществующего Семипалатинского испытательного полигона (Ш.Т. Тухватулин, М.А. Ахметов, Л.Д. Птицкая, В.Р. Бурмистров, О.И. Артемьев и др.) [57, 33].
Научно-технический интерес может представлять внешняя картина развития облака взрыва. Так, примерно через 40 мсек после подрыва заряда началось фонтанирование воды из скважины и характерное вспучивание грунта диаметром около 600 м у основания. Начальная скорость подъема купола грунта в эпицентре взрыва составляла 100 м/ сек. Спустя 2,5 сек после взрыва наблюдался прорыв раскаленных газов через слой раздробленной породы с образованием видимых глазом очагов свечения. К этому времени скорость движения породы вверх составляла 160 м/сек, то есть достигла максимума, и затем начала быстро снижаться.
В конце шестой секунды в верхней части столба сформировалось быстро расширяющееся конденсационное облако. Примерно на 10-й секунде столб выброса достиг максимальной высоты, равной 950 м, а диаметр составил 800 м. В результате падения и дробления грунта у основания султана выброса начала образовываться базисная волна, представляющая собой кольцевое облако пыли, которое распространялось в разные стороны с небольшой скоростью. Достигнув размеров в диаметре около 5000 м при высоте подъема пыли 500-750 м, движение фронта базисной волны практически прекратилось. В последующем облако пыли базисной волны смещалось в северо-западном направлении, а центральное пылевое облако сносилось ветром в северо-восточном направлении. В течение последующих 30 минут пыль в районе проведения взрыва в основном рассеялась, на поверхности Земли вокруг образовавшейся воронки стал виден навал грунта высотой до 20-35 м и диаметром 900-1000 м. К этому времени облако взрыва, поднявшись на высоту до 4800 м, разделилось на две части в соответствии с направлением ветра на разных высотах, формируя локальный след радиоактивного загрязнения. Через 15 минут после взрыва максимальные уровни радиации в облаке взрыва составляли 180 Р/ч, а через 3,5 часа - лишь 0,1 Р/ч [58 , 44].
Как известно, закономерности формирования радиационной обстановки в значительной степени зависят от состояния погоды и, в первую очередь, от состояния атмосферы. Погода в районе взрыва «Чаган» при его проведении была обусловлена восточной периферией циклона и влиянием с юго-запада теплого воздушного фронта. Слоистая облачность сплошного характера располагалась на высоте 2200 м, а расположенная ниже облачность в 5 баллов имела нижнюю границу на высоте около 800 м. Горизонтальная видимость составляла 8-10 км, наблюдалась слабая дымка, температура воздуха была равна -2,4-С [ 59, 60].
Формирование и облака взрыва, и радиоактивного следа происходило при аномальном распределении температуры и ветра по высоте. При этом слой атмосферы от поверхности земли и до максимальной высоты подъема облака, равной 4800 м, имел следующие характеристики:
- на высоте до 750 м располагался задерживающий слой воздух с изотермическим ходом температуры;
- на высоте от 750 м до 2500 м находился задерживающий слой с инверсионным ходом температуры, когда температура воздуха повышается с увеличением высоты;
- выше 2500 м располагался слой воздуха с нормальным ходом температуры, то есть, чем выше от поверхности земли, тем температура воздуха ниже [60 ,32].
Кроме такого необычного распределения температуры по высоте наблюдался и значительный разворот ветра по направлению с увеличением высоты (почти на 100- вправо в пределах максимальной высоты подъема облака). Сочетание этих факторов привело к образованию локального радиоактивного следа сложной конфигурации, схема которого представлена на рис. 2.5. Так, радиоактивные аэрозоли в слое от 0 до 750 м перемещались по азимуту 330- и сформировали загрязнение местности за счет выпадений из базисной волны. Нижняя часть облака взрыва, находившаяся в слое от 750 м до 2500 м, образовала «северную ветвь» следа с осью по азимуту 40-47-, а верхняя его часть, поднявшаяся выше 2500 м, перемещаясь по азимуту 70-, сформировала «южную ветвь» следа. Скорость ветра при формировании «северной ветви» составляла 22 км/ч, «южной» - 40 км/ч, а фронт базисной волны перемещался со скоростью 17 км/ч [61, 3].
Данные об уровнях радиации на осях и «северной», и «южной» ветвей следа приведены в табл. 13.
Следует отметить, что повышенные уровни радиации были зафиксированы и в г. Семипалатинске, где через 3 часа после взрыва (в 15 часов по местному времени) мощность дозы гамма-излучения достигла максимума, составив примерно 8 мР/ч. Возможно, причиной этому стал повышенный выход радиоактивных продуктов в атмосферу, который по оценкам специалистов мог быть равен 20 %, из-за того, что ядерный заряд при его несколько большем (по сравнению с расчетным) энерговыделением (140 кт), был заложен на глубине, соответствующей проектной мощности, равной 100 кт [ 62, 44].
Прохождение облака над городом продолжалось около 3 часов, однако уже в 17 часов по местному времени уровни радиации по показаниям дозиметрических приборов стали снижаться. Доза облучения от проходящего облака могла составить примерно 0,05 мЗв, а от радиоактивных выпадений на местность - 1,0-1,5 мЗв. Через 10 дней после взрыва мощность дозы гамма-излучения в г. Семипалатинске достигла фоновых значений. В ряде населенных пунктов, расположенных на следе облака ближе к центру взрыва, а именно, в поселках Знаменка и Иса уровни радиации снизились до фоновых значений через 30 дней, а в поселке Сарапан - только через 1,5 года.
Таблица 13 - Мощности доз гамма-излучения на территории радиоактивного следа подземного ядерного взрыва с выбросом грунта в скважине 1004 (взрыв «Чаган») на «Ч+24»после взрыва
Ось ветви следа | Уровни радиации на разных расстояниях (км) от центра взрыва на время «Ч+24ї, мР/ч | ||||||||||
1 | 3 | 6 | 8 | 15 | 24 | 30 | 37 | 49 | 60 | 70 | |
«Северная» ветвь | 25000 | 3300 | 875 | 460 | 160 | 0 | 35 | 45 | 26 | 7 | 4 |
«Южная» ветвь | - | - | - | - | 35 | 30 | 17 | 12 | 7 | 5 | 4 |
Положение радиоактивного следа и его размеры с различными граничными параметрами (численными значениями изолиний) можно определить, используя схему следа. Естественно, что в результате радиоактивного распада и миграции радионуклидов площадь загрязненной территории постоянно уменьшалась. Так, если по состоянию на июнь 1965 г. площадь следа, ограниченная изолинией 0,5 рентген в год (величина предельно допустимой дозы внешнего облучения населения), составляла примерно 140 км2, то через год (середина 1966 г.) она равнялась 50 км2, а еще через год, то есть в 1967 г., она уже составляла примерно 17 км2. Период уменьшения площади следа в 2 раза был равен 250 суткам. Примерно через 5 лет площадь контролируемой зоны следа составила менее 1 км2 [63 , 11].
В результате выпадения радиоактивных продуктов взрыва были загрязнены территории примерно 10 населенных пунктов, в которых проживало около 2000 человек. В табл. 14 приведены данные, характеризующие радиационную обстановку в наиболее загрязненных населенных пунктах.
Как показывают данные наиболее крупным по числу жителей населенным пунктом, в котором возможная доза облучения людей могла превышать один рентген, был поселок Знаменка. Жители этого поселка работали в основном в совхозе, имеющем преимущественно зерновое направление. Большинство семей имело свой молочный скот, земли, для выпаса которого находились в непосредственной близости от поселка. В зимнее время года содержание крупного рогатого скота было стойловое. Застройка села характеризовалась преимущественно домами саманного типа, водоснабжение было из колодцев, которые в своем большинстве не закрывались (не имели крышек). Снабжение поселка продуктами питания осуществлялась через торговую сеть, помимо этого, жители использовали и такие продукты местного производства, как молоко, молочные продукты и мясо (баранина, конина), а также картофель и овощи, которые хранились в подвалах домов.
Результаты расчетов доз внешнего и внутреннего облучения жителей поселка Сарапан с учетом поступления трития в организм людей приведены в табл. 8. Приведенные данные позволяют констатировать, что в течение первого года после взрыва «Чаган» в поселке Сарапан, как и в других населенных пунктах, расположенных на радиоактивном следе от этого взрыва, максимальному облучению подвергалось детское население, у которого основным критическим органом является щитовидная железа.
При длительном проживании в зоне радиоактивного загрязнения дозы облучения костной ткани и всего тела могли увеличиться примерно в два раза.
Эксперимент «Чаган» в полной мере продемонстрировал, что полигон в период проведения ядерных испытаний являлся потенциальным источником радиоактивного загрязнения окружающей среды, хотя в течение всей его деятельности, вплоть до закрытия в 1989 г. особое внимание уделялось вопросам обеспечения безопасности населения и изучению радиационной обстановки.
Таблица 14 - Радиационная обстановка в 1965 г. в населенных пунктах, территории которых были наиболее сильно загрязнены радиоактивными выпадениями после взрыва «Чаган»
Населенный пункт | Численность населения, чел. | Расстояние от места взрыва, км | Уровни радиации на «Ч+2», мР/час | Дозы гамма-излучения на местности в 1965 г., Р |
Сарапан | 162 | 13 | 4400 | 5,8 |
Иирбала | 10 | 22 | 700 | 6,7 |
Бейсень | 8 | 24 | 1300 | 2,8 |
Щербаковка | - | 48 | 300 | 2,6 |
Пса | 66 | 30 | 110 | 0,9 |
Знаменка | 980 | 40 | 170 | 2,4 |
Муса | 22 | 33 | 190 | 1,3 |
Торейгыр | 11 | 32 | 270 | 2,3 |
Таблица 15 - Возможные дозы внешнего и внутреннего облучения критических органов жителей поселка Сарапан за период с января 1965 г. по апрель 1966 г.
Критический орган | Дозы облучения различных групп населения, сГр (сЗв) | |||||
дети | взрослые | |||||
внешнее | внутреннее | сумма | внешнее | внутреннее | сумма | |
Щитовидная железа | 1,7 | 14,4 | 16,1 | 2,6 | 1,1 | 3,7 |
Костная ткань | 1.0 | 6;7 | 7,7 | 1,5 | 0,3 | 1,8 |
Все тело | 1,7 | 2,4 | 4,1 | 2,6 | 0,5 | 3,1 |
Кожа | - | - | 20,0 | - | - | 20,0 |
Систематическая оценка степени радиоактивного загрязнения почвы и растительности на СИП началась только после наземного ядерного взрыва, произведенного 24.08.1956г. и ставшего причиной выпадения радиоактивных осадков, в том числе вместе с дождем, на территории Семипалатинской и Восточно-Казахстанской областей. Распределение плотностей радиоактивного загрязнения по следу этого взрыва было неравномерным. Максимальное радиоактивное загрязнение местности, вызванное выпадением атмосферных осадков, произошло в районе г. Усть-Каменогорска [64 , 22].
Проведенные после взрыва измерения показали, что степень загрязнения почвы пропорциональна уровням радиации на местности. Данные о степени загрязнения почвы и растительности на 25.09.1956 г. в районах, расположенных вблизи Семипалатинского полигона, представлены в табл. 16.
Из данных следует, что, во-первых, наибольшая степень загрязнения почвы была отмечена в Семипалатинской области, на территории которой сформировалось большинство радиоактивных следов наземных ядерных взрывов, и, во-вторых, содержание естественного радионуклида калия-40 в почве и растительности практически не отличалось от содержания в них продуктов ядерных взрывов, что нужно учитывать при проведении расчетов. По результатам исследования послойного загрязнения почвы было установлено, что на целинных участках земли спустя несколько лет после осуществления взрывов наиболее загрязненным оказался поверхностный слой почвы глубиной до 1 см. Он содержал в 5-10 раз больше активности, чем слой почвы на глубине от 3 до 4 см. Загрязнение вспаханных участков местности происходило на глубину пахоты, т.е. до 16-20 см [65 , 33].
После 1958 г. по мере внедрения методов радиохимии и появления спектрометрической аппаратуры стали проводиться исследования по определению содержания в различных объектах внешней среды таких биологически опасных радионуклидов, как стронций-90, цезий-137 и йод-131. В поверхностном слое почвы на следе взрыва 1956 г. стронция-90 содержалось примерно 8% от величины общей активности. Наличие радиоактивных веществ в почве приводило к проникновению их в наземную растительность [66 , 10].
В 1956 г. специалистами комплексных экспедиций Института биофизики и полигона были проведены радиометрические исследования проб травы и злаковых растений. Результаты проведенных радиометрических исследований показали также, что содержание радиоактивных веществ в наземной части растений и в корневой системе было примерно одинаковым. В растениях, имеющих важное значение для сельскохозяйственного производства, был обнаружен стронций-90, находившийся в подвижной (водорастворимой) форме. Переход радионуклидов в растворимое состояние зависел от физических свойств радиоактивных частиц, основная часть которых после наземного ядерного взрыва находилась в оплавленном состоянии.
Таблица 16 - Степень радиоактивного загрязнения почвы и растительности (разнотравья) по состоянию на 25.09.1956 г.
Населенный пункт, вблизи которого отобрана проба | Расстояние от центра Опытного поля, км | Содержание радиоактивных веществ в пробах, Ки/кг | |
почва | наземная растительность | ||
Рубцовск | 350 | 4x10-7 | 2х10-6 - 4х10-9 |
Семипалатинск | 160 | 8x10-7 | 5x10-8 - 8х10-7 |
Чарская | 250 | 1.5x10-7 | 1x10-7 |
Аягуз | 330 | 7x10-7 | 3x10-8 |
Кара-Аул | 200 | 6x10-7 | 1x10-7 |
Саржал | 100 | 1.3х10-6 | 6х10-8 |
Майское | 60 | 3х10-8 | 1x10-7 |
Баян-Аул | 150 | 7x10-8 | 5x10-8 |
Содержание естественного радионуклида калия-40 (фоновая концентрация) | - | (1-2) х10-8 | (1-2) xl0-8 |
В 1991-1992 гг. было выполнено аэро-гамма-спектрометрическое обследование территории полигона и прилегающих к нему районов. В результате были определены мощности экспозиционных доз гамма-излучения на высоте одного метра от поверхности земли, плотности загрязнения местности цезием-137, а также поверхностные концентрации в почве урана, тория и калия-40. Съемка территории проводилась в масштабе 1:300000 при расстоянии между профилями съемки, равном 3 км, и при ширине поля регистрации детектором около 300м. На большей части территории полигона плотность загрязнения цезием-137 находится в пределах от уровня глобальных выпадений (0,05 Ки/км2 до 0,5 Ки/км2. Плотности загрязнения цезием-137 более 1 Ки/км2 были зафиксированы только на испытательных площадках Опытного поля и на очень небольших участках радиоактивного следа, который образовался после взрыва, осуществленного 12.08.1953г [67 , 44].
Таким образом, можно сделать вывод, что радиологическое состояние поверхностного слоя почвы СИП определяется в основном такими долгоживущими продуктами, как стронций-90 и цезий-147 с их дочерними радионуклидами, а также изотопами плутония. Определяющее значение указанных радионуклидов обусловлено их значительно большей наработкой в ядерных взрывах, значительным промежутком времени с момента проведения взрывов и их высоким биологическим действием, при этом активность более короткоживущих радионуклидов снизилась из-за их естественного распада.
За время, прошедшее после взрывов, активность стронция-90 и цезия-137 уменьшилась, а альфа-активность плутония практически не изменилась, поэтому абсолютные значения активностей стронция-90 + цезия-137 и плутония стали примерно одинаковыми. С учетом того, что радиотоксичность плутония почти на два порядка выше, чем стронция-90 и цезия-137, можно предположить, что проблема радиоактивного загрязнения территории полигона – это проблема загрязнения ее плутонием [68,33].
Акиматом Павлодарской области по договоренности с Национальным ядерным центром, были произведены захоронения высокотоксичных химических отходов (трихлордифенил) в штольнях подземных сооружений бывшей испытательной площадки СИЯП, при этом не была проведена обязательная государственная экологическая экспертиза. Министерство охраны окружающей среды и Министерство энергетики и минеральных ресурсов не располагают информацией о проведенных захоронениях.
Разрабатываемая в настоящее время госпрограмма социальной и экономической реабилитации региона не содержит никакой связи с реальным положением дел на местах. Содержащиеся в ней мероприятия механически перенесены из ранее существовавших инвестиционных проектов, не связанных с Семипалатинским полигоном, а, следовательно, предлагаемые меры не увязаны с фактической ситуацией и не направлены на реабилитацию региона.
Сложившаяся ситуация в целом по СИЯП и проведенный анализ показал, что несмотря на повышенный интерес мирового сообщества, государственная политика направленная на реабилитацию граждан, пострадавших вследствие ядерных испытаний и социально–экономическое развитие территории не является системной. Отсутствие консолидированных действий государственных органов, нарушение ими законодательства, отсутствие точных данных, половинчатый подход к реализации законодательства по СИЯП и Программ разработанных и принятых Правительством Республики Казахстан говорят сами за себя.
При наличии фактов, не соблюдения законодательства Республики Казахстан (Генеральной прокуратурой и ее территориальными органами) не было произведено ни одной проверки в порядке надзора, следовательно, виновные не были привлечены к ответственности».
Характер радиоактивного загрязнения почвенного покрова СИП зависит от природных условий территории, где произошло загрязнение и его источника. Исследования были проведены на испытательных площадках: «Опытное поле», БРВ, «Балапан», «Сары-Узень», «Дегелен», объектах «Атомное озеро» и «Телькем-1», «Телькем-2», а также на следах выпадений радиоактивных облаков.
Вышеперечисленные объекты обследований, кроме площадки «Дегелен», находятся в зональных природных условиях, где источником увлажнения почв являются только атмосферные осадки. Атмосферные ядерные испытания, проведенные на площадке «Опытное поле», участке БРВ привели к выпадению техногенных радионуклидов на поверхность почвы. Исследования показывают, что максимальное содержание долгоживущих радионуклидов 137Cs, 90Sr и 239+240Pu находится в почвах в горизонте 0-5, 5-10см. В условиях недостаточного увлажнения аридной зоны указанное распределение радионуклидов не претерпело каких-либо изменений, несмотря на срок взаимодействия радионуклидов с природной средой более 40-50 лет. Такое распределение радионуклидов в почвах исследуемой территории является закономерностью, которая может быть изменена техногенными нарушениями, как спекание минеральных частиц почвы на площадке «Опытное поле», образование воронок при испытании БРВ.
В условиях сильного техногенного нарушения почв-грунтов, какое имело место при экскавационных ядерных взрывах на объектах «Атомное озеро» и «Телькем-1», «Телькем -2», распределение радионуклидов в таком грунте (отвалы водоемов) не подчиняется какой-либо закономерности.
При подземных ядерных испытаниях (площадки «Балапан», «Дегелен») радиоактивное загрязнение почвенного покрова имеет свои особенности. Так, на площадке «Балапан» при испытаниях в скважинах только в случае аварийных ситуаций происходило местами и незначительное загрязнение почвенного покрова вблизи оголовка скважин. Распределение радионуклидов при этом отвечает выявленным закономерностям.
На площадке «Дегелен» (это низкогорный массив) проведенные подземные испытания в штольнях вызвали разрушения верхних ярусов горных ландшафтов, а подготовка и проведение взрывов нарушили естественное сложение луговых почв долин ручьев. Было оказано и радиоактивное воздействие на компоненты природной среды, которое продолжается и в настоящее время, так как подземные воды выносят из штолен техногенные радионуклиды. Их сорбируют и накапливают луговые почвы долин ручьев. Максимальное содержание 137Cs, 90Sr в таких почвах приурочено к поверхностному горизонту (0-8см), представленному дерниной, но распределение радионуклидов в почвенном профиле значительно растянуто, иногда до почвообразующих пород, и, прежде всего, радионуклида 90Sr, что обусловлено значительными уклонами местности, наличием склонового и грунтового потока.
Таким образом, на большей части радиоактивно-загрязненных участков СИП основное количество техногенных радионуклидов в почвах сосредоточено в горизонте 0-5, 5-10см, а в условиях изрезанного рельефа, обусловливающего дополнительное увлажнение склоновым стоком и грунтовыми водами возможна их пространственная миграция. Техногенное нарушение изменяет выявленные закономерности распределения радионуклидов в почвах.
Результаты радиоэкологических исследований, проведенных на территории СИП в последние годы, выявили участки значительного радиоактивного загрязнения, включая и загрязнения ядерными материалами. В первую очередь, эти загрязнения связаны с испытательными площадками и следами облаков ядерных взрывов.
На территориях, считавшихся ранее относительно благополучными в радиационном отношении (северная и западная части СИП), обнаружены участки, которые идентифицированы как места проведения испытаний боевых радиоактивных веществ. Имеются места, загрязненные компонентами ракетного топлива. Выявляются участки со значительным радиоактивным загрязнением, которые имеют относительно небольшие размеры, носят локальный характер и связаны, по мнению специалистов, с результатами несанкционированной деятельности. Как правило, это поиск добычи лома черных и цветных металлов.
В настоящее время обследовано около 40% территории полигона с достоверностью при площадном обследовании – 25%, при местном (локальном) обследовании – 90%.
В связи с ограниченным финансированием площадные обследования проводятся по мелкомасштабной сетке. При обнаружении участков с повышенным радиационным фоном осуществляется локальное обследование по крупномасштабной сетке.
При решении проблем СИП, необходимо также учитывать, что 3 из 4-х имеющихся в Казахстане исследовательских ядерных реакторов расположены на данной территории. Ядерные реакторы размещены на двух экспериментальных комплексах (площадках) Национального ядерного центра Республики Казахстан, на одном из которых также находится пункт долговременного хранения отработанных ампульных источников ионизирующих излучений, имеющий республиканское значение.
0 комментариев