Оптические методы анализа и их современное аппаратурное оформление: обзор WEB–сайтов фирм – продавцов химико-аналитического оборудования

52670
знаков
8
таблиц
8
изображений

«Оптические методы анализа и их современное аппаратурное оформление: обзор WEB – сайтов фирм – продавцов химико-аналитического оборудования»


Содержание

Введение

Глава 1. Основы оптических методов анализа

Глава 2. Современное аппаратурное оформление

Глава 3. Обзор WEB- сайтов фирм – продавцов химико-аналитического оборудования

Литература


ВВЕДЕНИЕ

В аналитической химии часто приходится сталкиваться с определением малых количеств (следов) веществ. Например, содержание примесей в чистых металлах исчисляется тысячными долями процента. Содержание такого количества вещества невозможно определить химическими методами, в таких случаях приходится использовать оптические методы анализа. Наибольшее распространение имеет абсорбционный анализ, который может выполняться спектрофотомерией, фотоколориметрией и колориметрией.

К оптическим методам относятся турбодиметрия и нефелометрия — анализ основан на поглощении и рассеянии лучистой энергии взвешенными частицами определяемого вещества, а также флуорометрия — основан на измерении вторичного излучения, возникающего при взаимодействии лучистой энергии с анализируемым соединением, и др.


ГЛАВА 1. ОСНОВЫ ОПТИЧЕСКИХ МЕТОДОВ АНАЛИЗА

Спектрофотомерия основана на измерении поглощения моно хроматического света однородной, нерассеивающей системой в видимой, ультрафиолетовой и инфракрасной областях. Фотоколориметрия — это анализ по поглощению полихроматического излучения анализируемым веществом.

Колориметрия является частным случаем применения немонохроматического излучения, она основана на поглощении света окрашенными растворами. При поглощении системой некоторого количества лучистой энергии атомы будут возбуждаться и переходить на более высокий энергетический уровень. При однородной системе, которую мы имеем в случае спектрофотомерии и фотоколориметрии, количество энергии поглощения находится в прямой зависимости от концентрации вещества в растворе.

Законы поглощения света (законы колориметрии). Когда поток света (с интенсивностью I падает на кювету с раствором, то часть его (с интенсивностью I,) отражается от поверхности кюветы, часть (с интенсивностью 1

будет поглощаться раствором и часть пройдет через него (рис.1).

Поэтому между этими величинами будет следующая зависимость:

П. Бугером и И. Ламбертом была установлена зависимость между толщиной слоя раствора и поглощением светового потока: слои вещества одинаковой толщины всегда поглощают одну и ту же часть падающего на них светового потока (закон Бугера — Ламберта):

Коэффициент поглощения 1г» зависит только от природы рас творенного вещества и длины волны света. Численно он равен обрат ной величине толщины слоя раствора, ослабляющего интенсивность светового потока в 10 раз:

Фотоколориметрия

Интенсивность прошедшего через раствор света меняется не толь ко от концентрации и высоты слоя раствора, но и от изменения интенсивности входящего светового потока. При фотоколориметрических определениях об интенсивности прошедшего через раствор света можно судить по силе фототока. Определения проводят в фотоэлектроколориметрах (ФЭК). В последние годы наиболее распространенными фотоэлектроколориметрами являются «двуплечие» колориметры — с двумя фотоэлементами, каждый из которых снабжен диафрагмой. Оба фотоэлемента включены в общую схему так, чтобы даваемые ими фототоки имели противоположное направление.

При одинаковой освещенности обоих фотоэлементов (одинаковая окраска стандартного и испытуемого растворов) токи от них в цепи гальванометра взаимно компенсированы и стрелка гальванометра стоит на нуле, что является признаком одинаковой интенсивности свет прошедшего через оба раствора. Небольшая разница в интенсивности окраски вызовет изменение фототока, которое можно заметить по отклонению стрелки гальванометра. В лабораториях часто применяются фотоэлектриметрические колориметры ФЭК-56, ФЭК-56М и др.

ФЭК-56 предназначается для измерения оптической плотности или светопропускания жидких растворов. Приемниками световой энергии служат два фотоэлемента; в качестве нуль прибора используется индикаторная лампа. Источником света в приборе служит лампа накаливания и ртутно-кварцевая лампа сверхвысокого давления. С этими лампами возможна работа в диапазоне длин волн от 315 до 630 ммк. При измерении в ультрафиолетовой области спектра используют ртутно-кварцевую лампу (рис. 4). Световой поток от источника света через светофильтр попадает на призму, делящую пучок на левый и правый. Источник света помещен в фокусе линз, и световые пучки, отражаясь от зеркала, выходят параллельными. далее световые потоки проходят через кюветы и попадают на линзы. В фокусе линз помещены матовые стекла, за которыми расположены фотоэлементы. В правый световой пучок могут последовательно включаться кюветы с раствором и растворителем. Раздвижная диафрагма при вращении связанного с ней барабана меняет свою площадь, вследствие чего меняет интенсивность светового потока, падающего на правый фотоэлемент.[1-4]

ФОТОЭЛЕКТРОКОЛОРИМЕТРЫ.

Фотоэлектроколориметр – это оптический прибор, в котором монохроматизация потока излучения осуществляется с помощью светофильтров.

Колориметр фотоэлектрический концентрационный КФК-2

Назначение и технические данные. Однолучевой фотоколориметр КФК-2 предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315–980 нм. Весь спектральный диапазон разбит на спектральные интервалы, выделяемые с помощью светофильтров. Пределы измерения пропускания от 100 до 5% (оптической плотности от 0 до 1,3). Основная абсолютная погрешность измерения пропускания не более 1%.

Светофильтры. Для того чтобы из всей видимой области спектра выделить лучи определенных длин волн в фотоколориметрах на пути световых потоков перед поглощающими растворами устанавливают избирательные поглотители света – светофильтры. Светофильтры пропускают лучи лишь в определенном интервале длин волн с полушириной пропускания λ1/2макс–λ’1/2макс и практически полностью поглощают лучи других длин волн (см. таблицу). Чем уже область максимального пропускания лучей (размытость максимума пропускания) светофильтра, тем выше его избирательность к лучам этого интервала длин волн.

Порядок работы

1. Включите колориметр в сеть за 15 минут до начала измерений. Во время прогрева кюветное отделение должно быть открыто (при этом шторка перед фотоприемником перекрывает световой пучок).

2. Введите рабочий светофильтр.

3. Установите минимальную чувствительность колориметра. Для этого ручку "ЧУВСТВИТЕЛЬНОСТЬ" установите в положение «1», ручку "УСТАНОВКА 100 ГРУБО" – в крайнее левое положение.

4. Стрелку колориметра вывести на нуль с помощью потенциометра «НУЛЬ».

5. В световой пучок поместите кювету с контрольным раствором.

6. Закройте крышку кюветного отделения

7. Ручками "ЧУВСТВИТЕЛЬНОСТЬ" и "УСТАНОВКА 100 ГРУБО" и "ТОЧНО" установите стрелку микроамперметра на деление «100» шкалы пропускания.

8. Поворотом рукоятки кюветной камеры поместите в световой поток кювету с исследуемым раствором.

9. Снимите показания по шкале колориметра в соответствующих единицах (Т% или Д).

10. После окончания работы отключите колориметр от сети, очистите и протрите насухо кюветную камеру.

Определение концентрации вещества в растворе с помощью КФК-2.

При определении концентрации вещества в растворе с помощью калибровочного графика следует соблюдать следующую последовательность:

• выбрать светофильтр;

• выбрать кювету;

• построить градуировочную кривую;

• измерить оптическую плотность исследуемого раствора и определить его концентрацию, используя градуировочную кривую.

Выбор светофильтра. Наличие в колориметре узла светофильтров и набора кювет позволяет подобрать такое их сочетание, при котором погрешность в определении концентрации будет минимальной.

Если спектральные характеристики окрашенного вещества неизвестны, светофильтр для работы можно выбрать самостоятельно. В видимой части спектра воспринимаемый цвет есть результат избирательного поглощения определенного участка спектра белого света. Цвет раствора является дополнительным к цвету поглощения излучения. Поэтому измерение поглощения следует проводить в дополнительной для цветной реакции области спектра. Так, если раствор окрашен в сине-зеленый цвет, то нужно измерять поглощение этим раствором красного цвета.

Более точный выбор светофильтра осуществляется следующим образом.

Налейте окрашенный раствор в кювету и определите оптическую плотность для всех светофильтров.

По полученным данным постройте кривую, откладывая по горизонтальной оси длины волн, соответствующие максимуму коэффициента пропускания светофильтров (см. таблицу), а по вертикальной оси – соответствующие значения оптической плотности раствора. Отметьте тот участок кривой, для которого выполняются следующие условия:

• оптическая плотность имеет максимальную величину;

• ход кривой примерно параллелен горизонтальной оси, т.е. оптическая плотность мало зависит от длины волн.

Светофильтр для работы выбирается так, чтобы длина волны, соответствующая максимуму коэффициента пропускания светофильтра, приходилась на отмеченный выше участок спектральной кривой испытуемого раствора. Если эти условия выполняются для нескольких светофильтров, то выберите тот из них, для которого чувствительность колориметра выше.

Выбор кюветы. Предварительный выбор кювет проводится визуально, исходя из интенсивности окраски раствора. Если раствор интенсивно окрашен (темный), следует пользоваться кюветами с малой длиной оптического пути (1–5 мм). В случае слабоокрашенных растворов измерения проводят в кюветах с большой длиной оптического пути (20–50 мм).[1, 4-8]

Спектрофотомерия

В спектрофотометре применяется монохроматическое излучение как в видимом, так и в примыкающих к нему ультрафиолетовом и инфракрасном участках спектра. В связи с использованием монохроматического излучения спектрофотометр обладает большими возможностями в связи с широким диапазоном длин волн, кроме того, этот метод более точен.

Зависимость светопоглощения и молярные коэффициенты поглощения от длины волны излучения выражаются кривой (спектром) поглощения света данным веществом. На оси абсцисс откладывают величину длины волн, па оси ординат — величину оптической плотности В или молярные коэффициенты погашения а. Спектр поглощения характеризуется определенными полосами, а для каждой полосы характерна максимальная длина волны. Спектр поглощения является индивидуальной характеристикой данного вещества.

Во всех случаях измерение оптической плотности раствора не обходимо производить при максимальной длине волны макс, которая соответствует максимальному поглощению света исследуемым раствором. При этом достигается наибольшая точность определения.

При проведении количественно го анализа методом спектрофотомерии необходимо концентрацию анализируемого вещества подбирать с таким расчетом, чтобы вел и- чина оптической плотности находилась в пределах 0,2—0,8, так как при В -с 0,2 и В - 0,8 резко возрастает.

Спектрофотометр СФ-4 предназначается для измерения пропускания (оптической плотности) жидких и твердых прозрачных веществ в области спектра от 220 до 1100 ммк. На приборе измеряется оптическая плотность исследуемого раствора относительно воды или раствора сравнения (рис. 2).

Поток света от источника, в качестве которого служит или лампа накаливания, или водородная лампа, попадает на зеркальный конденсор, конденсор собирает его и направляет на плоское зеркало, которое отклоняет пучок лучей на 900 и направляет его на линзу и щель. Свет, прошедший через цель, попадает на зеркальный объект и направляется далее параллельным пучком на диспергирующую линзу, которая разлагает его в спектр. Пройдя призму под углом, диспергированный пучок направляется обратно на объектив и фокусируется им на выходной щели, которая располагается под вход ной щелью. Вращая призму, можно получить на выходе монохрома тора свет различных длин волн. Монохроматический свет, пройдя из щели кварцевую линзу, фильтр (поглощающий рассеянный свет), кювету с эталоном или исследуемым раствором и защитную пластинку, попадает на фотоэлемент сурьмяно-цезиевый (для работы в области 220—650 ммк) или кислородно-цезиевый (для работы в области 650—1100 ммк.

Источником сплошного излучения служат лампы накаливания при работе в области спектра 320—1100 ммк или водородная лампа при работе в области спектра 220—350 ммк.

Устройство прибора. К. корпусу прибора примыкают отделение для кювет, закрыв крышкой, и камера для фотоэлементов. Сзади корпуса крепится осветитель (рис.3). Длину волн устанавливают, вращая рукоятку, и контролируют по шкале. Ширину щели монохроматора изменяют вращением рукоятки, величина раскрытия отсчитывается в миллиамперах по шкале. Кюветная камера предназначена для установки образцов. Держатель с кюветами устанавливается в каретку, которая перемещается с помощью рукоятки. Между корпусом прибора и кюветной камерой помещен блок. В нижней части блока на пути луча, выходящего из монохроматора, установлен движок с фильтрами, поглощающими рассеянное излучение. Смену светофильтров производят рукояткой. Включение фотоэлементов производится с помощью рукоятки. Если рукоятка не выдвинута в схему включен сурьмяно-цезиевый фотоэлемент, при выдвинутой рукоятке в схему включается кислородно-цезиевый фотоэлемент. В камере помещен патрон с осушителем. Справа на основании прибора укреплена панель, на которой рас положены рукоятка потенциометра плавного изменения чувствительности, рукоятка переключателя изменения чувствительности ступенями, рукоятка переключения пределов измерения и рукоятка переключателя грубой компенсации тока. В приборе используются три источника света. Лампа накаливания и водородная лампа установлены в общем осветителе, но каждая в своем держателе. Ртутная лампа предназначается для градуировки прибора, устанавливается вместо водородной.

Ход анализа. Перед включением прибора источник излучения устанавливают в рабочее положение, закрывают щель, поставив рукоятку в положение закр.». Включают прибор, соблюдая порядок, указанный в инструкции, и прогревают его в течение 10 мин. Ставят потенциометр чувствительности в среднее положение, а рукоятку в одно из положений:

«1 2», «3», 4Х4>. до окончания измерения изменять положение рукоятки переключателя нельзя. Рукояткой устанавливают требуемую длину волны, в зависимости от используемой области спектра помещают в световой пучок соответствующий светофильтр (при работе в области спектра 300—380 ммк — из стекла УФС-2, а в области 590—700 ммк — из стекла ОС-14).

Рукояткой устанавливают на пути светового луча стандартный раствор, ставят переключатель в положение вык. и компенсируют темновой ток фотоэлемента грубой и плавной регулировками темнового тока. Открывают фотоэлемент, поставив рукоятку шторки переключателя в положение <откр.». Вращением рукоятки устанавливают стрелку миллиамперметра на условный нуль, стрелку подводят плавно рукояткой и снова компенсируют темновой ток. Перемещая каретку рукояткой, устанавливают на пути пучка исследуемый раствор и рукоятку ставят в положение «хI». Рукояткой, которая поворачивает движок отсчетного потенциометра, устанавливают стрелку миллиамперметра на условный нуль и снимают отчет по шкале пропускания (плотности). Снова вводят эталон в пучок света, установив рукоятку в положение выкл.», при этом стрелка миллиамперметра должна остаться на условном нуле. При работе необходимо строго соблюдать порядок включения прибора, аккуратно обращаться с кварцевыми кюветами, вклады- щами и шлифовальным и пластинкам и. Он а дороже платиновых изделий той же массы. Переключение фотоэлементов делают осторожно. Открывать кюветную камеру надо при закрытой шторке.

Рис. 1. Оптическая схема монохроматора:

1 — источник света; 2 — зеркальный конденсор; 3 — плоское зеркало; 4 — линза б — щель; б — зеркальный объектив; 7 — диспергирующая линза; 8 — выходная щель; 9 — кварцевая линза; 10 — фильтр; 11 эталон; 12 — защитная пластинка; 13 — фотоэлемент.


Рис. 2. Спектрофотометр СФ-4:

1 — корпус; 2 шкала; 3 — маховик; 4 — рукоятка; 5 индикаторный миллиамперметр; б переключатель; 7 — регулятор чувствительности; а — регулятор щели; 9 — блок сменных электрофильтров; 10 — осветитель; 11 — отделения для кювет; 12 рукоятка для смены кювет; 13 — переключатель фотоэлементов; 14 — камера для фотоэлементов; ‘5 — патрон; 16 — панель; 17 — шкала.

Спектрофометр СФ-26

Назначение и технические данные. Спектрофотометр СФ-26 предназначен для измерения пропускания и оптической плотности жидких и твердых веществ в области 186–1100 нм. Пределы измерения коэффициента пропускания 3–100% (оптической плотности 0–2,0). Основная абсолютная погрешность измерения по шкале коэффициентов пропускания в области спектра 190–1100 нм не более 1%.

Рис.4 Внешний вид спектрофотометра СФ-26.

1 - монохроматор; 2 - шкала длин волн; 3 - измерительный прибор; 4 - осветитель с источником излучения и стабилизатором; 5 - кюветное отделение; 6 - рукоятка перемещения каретки с кюветами; 7 - камера с фотоприемниками и усилителем; 8 -рукоятка переключения фотоэлементов; 9 - рукоятка установки чувствительности; 10 - рукоятка установки на «0»; 11 - рукоятка шторки; 12 - рукоятка регулировки ширины щели; 13 - рукоятка «Отсчет»; 14 - рукоятка компенсации; 15 – рукоятка шкалы длин волн.

Порядок работы.

1. В соответствии с выбранным спектральным диапазоном измерений установите в рабочие положения фотоэлемент и источник излучения.

При работе в области спектра 186–340 нм установите переключатель ламп на кожухе осветителя в положение «Д» (после минутного прогрева дейтериевая лампа загорается, одновременно загорается и соответствующая индикаторная лампочка на передней панели), при работе в области спектра 340–1100 нм – в положение «Н» (лампа накаливания и индикаторная лампочка загораются сразу). Переключение фотоэлемента производится с помощью рукоятки 8. Если рукоятка находится в положении «Ф», в схему включен сурьмяно-цезиевый фотоэлемент для измерений в области спектра от 186 до 620 нм. Если рукоятка установлена в положение «К», в схему включен кислородно-цезиевый фотоэлемент – для измерений в области спектра от 620 до 1100 нм.

2. Установите рукоятку «КОМПЕНСАЦИЯ» в положение «0».

3. Установите рукоятку «ЧУВСТВИТЕЛЬНОСТЬ» в положение «1».

4. Установите рукоятку 13 в положение «×1».

5. Закройте фотоэлемент, поставив рукоятку 11 шторки в положение ЗАКР.

6. Установите требуемую длину волны, вращая рукоятку 15 в сторону увеличения длин волн. Если при этом шкала повернется на большую величину, то возвратите ее назад на 5–10 нм и снова подведите к требуемому делению.

7. Включите тумблер «СЕТЬ», после чего должны загореться сигнальная лампа «СЕТЬ» и сигнальная лампа «Д» или «Н» в соответствии с выбранным источником излучения. Стабильная работа спектрофотометра обеспечивается через 30 минут после его включения.

8. Установите рукояткой 10 «НУЛЬ» стрелку измерительного прибора на деление «2,0» шкалы оптической плотности «D».

9. Установите на пути потока излучения контрольный образец, перемещая рукояткой 6 каретку. При отсутствии контрольного образца измерение будет проводиться относительно воздуха.

10. Откройте фотоэлемент, установив рукоятку 11 шторки в положение «ОТКР».

11. Установите стрелку измерительного прибора на деление «0» шкалы «D», вращая рукоятку 12 механизма изменения ширины щели.

12. Установите на пути потока излучения опытный образец, перемещая рукояткой 6 каретку. Снимите показания прибора по шкале оптической плотности «D».

13. Выключите спектрофотометр тумблером «СЕТЬ».

14. Протрите кюветное отделение и сделайте запись в журнале "Учет наработки спектрофотометра СФ-26".

Эмиссионный спектральный анализ

Этот вид анализа предполагает сжигание некоторого количества пробы в газовом пламени или в электрической дуге. При этом вещество испаряется, молекулярные соединения обычно диссоциируют на атомы, которые возбуждаются и дают свечение, Количество лучистой энергии, излучаемое атомами за 1 сек (интенсивность излучения), определяется числом излучающих атомов в 1 см и вероятностью спонтанного излучения. Для того чтобы атомы могли излучать эту энергию, их необходимо перевести из нормального (с наименьшей энергией) состояния в верхнее возбужденное состояние. Это достигается одним из указанных выше методов.

Для спектральных серий, связанных с самыми нижними состояниями атомов, первые линии являются самыми яркими в спектре излучения. Однако вероятность излучения этих линий для различных атомов значительно отличается по величине. Наибольшая вероятность их излучения наблюдается у атомов щелочных и щелочноземельных металлов.

Различают следующие виды эмиссионного спектрального анализа:

Визуальный анализ. Оценка качественного и количественного содержания компонентов в этом случае производится при наблюдении спектра глазом в видимой области или при помощи различных преобразователей невидимого излучения в видимое. Непосредственные визуальные наблюдения спектра широко применяются на практике для полуколичественного анализа и сортировки сплавов и для точного количественного анализа.

Фотографический анализ. Спектр фотографируется на пластинку или пленку, которая затем для качественного определения состава рассматривается при помощи спектропроектора. Для количественного анализа спектр фотометрируется при помощи микрофотометров и полученные данные обрабатываются приемами фотографического фотометрирования. Связь с концентрациями устанавливается градуировкой при помощи специальной системы эталонов. При фотоэлектрическом анализе определение содержания про- наводится сравнением фототоков от двух приемников, освещаемых отдельными спектральными линиями пары. По ним сразу получается результат анализа в виде указания на шкале из мерительного прибора или в виде цифровой записи на ленте пишущего или печатающего устройства. Пламенная фотометрия основана на излучении (эмиссионный метод) световой энергии элементов в пламени.

При фотометрии пламени анализируемый раствор сжатым воздухом или кислородом в виде аэрозоля вводят в пламя газовой горелки. При наличии в растворе ионов легковозбуждаемых элементов пламя окрашивается вследствие характерных излучений, которые фиксируются фотоэлементом. Возникающий фототок измеряется чувствительным гальванометром.

В большинстве случаев изменение величины фототока при определенных условиях происходит пропорционально концентрации определяемого элемента. Но такая зависимость интенсивности излучения (1) от концентрации элемента (с) соблюдается только в определенном интервале концентраций, за пределами которого она часто нарушается. Величина фототока зависит ве только от концентрации свободных атомов в пламени, но и от состава пламени, температур, степени диссоциации соединений на атомы и от степени ионизации атомов в пламени. Фотометрия пламени широко используется в цветной металлургии при анализе различных руд. В настоящее время этим методом определяют около 50 элементов. Особую ценность метод фотометрии пламени приобретает при анализе смесей, содержащих незначительные количества щелочных и щелочноземельных элементов.

Пламенный фотометр используется для определения интенсивности излучения элементов, которые могут возбуждаться пламенем горелки (рис. 4). Исследуемый раствор при помощи сжатого воздуха подают в распылитель, откуда он в виде аэрозоля попадает в пламя горелки. Излучение пламени собирается вогнутым зеркалом и направляется линзой на светофильтр, а далее к фотоэлементу. Возникающий здесь фототок усиливается усилителем и измеряется чувствительным гальванометром.

Ход работы

Прибор включают в сеть, затем открывают вентиль редуктора баллона с горючим газом или кран газопровода. Зажигают горелку, включают компрессор. Вентилем добиваются однородного пламени горелки. При помощи манометра следят за избыточным давлением, которое не должно превышать 0,5—0,6 атм.

Рис. 4. Схема эмиссионного пламенного фотометра:

1 — компрессор; 2 — стакан с анализируемым раствором; З — распылитель; 4 — вентиль, регулирующий подачу газа; 5 — манометр; б — промывалка; 7 — горелка; 8— вогнутое зеркало; 9 линза; 10 — светофильтр (монохрома тор); 11—фотоэлемент (фотоумножитель); 12 — усилитель; 13 — стрелочный гальванометр.

ТЕОРИЯ НЕФЕЛОМЕТРИЧЕСКОГО И ТУРБИДИМЕТРИЧЕСКОГО МЕТОДОВ

В нефелометрическом и турбидиметрическом методах анализа использованы явления рассеяния или поглощения света твердыми или коллоидными частицами, находящимися в жидкой фазе во взвешенном состоянии.

Нефелометрическим методом анализа (нефелометрией) называют метод, основанный на измерении интенсивности светового потока, рассеянного твердыми частицами, находящимися в растворе во взвешенном состоянии.

Турбидиметрическим методом анализа (турбидиметрией) называют метод, основанный на измерении интенсивности потока, прошедшего через раствор, содержащий взвешенные частицы. Интенсивность уменьшается вследствие поглощения и рассеяния светового потока.

Рассеяние и поглощение света растворами, содержащими взвешенные частицы. Как указывалось в при рассмотрении фотометрического метода анализа, свет, проходя через раствор, отражается от достаточно крупных частиц, находящихся в растворе. Поэтому приведенное уравнение (П-1) принимает вид:

Значения обоих членов уравнения зависят от концентрации взвешенных частиц в растворе. Интенсивность рассеянного света Irизмеряется в нефелометрии, а ослабленного проходящего света It в турбидиметрии.

Интенсивность потока, рассеиваемого небольшими частицами, подчиняется уравнению Рэлея:

При нефелометрических исследованиях величины n, n1, r, b

остаются постоянными, и поэтому уравнение Рэлея может быть

написано в упрощенном виде:

Из уравнения (Ш-3) следует, что интенсивность рассеянного светового потока пропорциональна числу дисперсных частиц, т. е. концентрации определяемого вещества. На интенсивность рассеянного светового потока влияют не только количество, но и размеры частиц — обстоятельство, значительно усложняющее практическое выполнение нефелометрического анализа. Наконец, множитель 1/l4 показывает, что интенсивность рассеянного света быстро возрастает с уменьшением длины волны. Если анализируемую суспензию освещают белым светом, то в результате значительно большего рассеяния коротких волн рассеянный свет кажется голубым, в то время как проходящий свет имеет красноватый оттенок.

При турбидиметрических измерениях интенсивность прошедшего светового потока It может быть определена по уравнению

Условия работы. При нефелометрическом и турбидиметрическом анализе необходимо соблюдать ряд условий, определяющих успешность работы.

1. Вследствие того что при работе этими методами обычно применяют сильноразбавленные растворы, получаемые осадки, вернее взвеси, должны иметь ничтожную растворимость.

2. Как видно из приведенных уравнений, значения рассеянного и поглощенного света зависят от размеров частиц, находящихся в растворе. Следовательно, получение правильных результатов при анализе суспензий зависит от методики получения суспензий и от воспроизводимости их оптических свойств. На размеры частиц и оптические свойства суспензии влияют следующие факторы:

1) концентрация ионов, образующих осадок;

2)   отношение между концентрациями смешиваемых растворов;

3)   порядок смешивания растворов;

4)   скорость смешивания;

5)   время, требуемое для получения максимальной мутности;

6)   стабильность дисперсии;

7)   присутствие посторонних электролитов;

8)   присутствие неэлектролитов;

9)   температура;

10)наличие защитных коллоидов.

Таким образом, изучение всех этих факторов и стандартизация условий подготовки вещества к нефелометрическому определению необходимы для правильной работы.

3. Взвеси должны быть стойкими во времени, т. е. не оседать в течение достаточно длительного времени. Для увеличения стойкости взвесей часто применяют защитные коллоиды.

Все эти ограничения приводят к тому, что нефелометрические и турбидиметрические методы оказываются менее точными, чем описанные выше фотометрические. В практике аналитической химии они используются только в тех случаях, когда определяемые ионы или вещества нельзя определить фотометрическими методами, например сульфаты и хлориды, которые не дают устойчивых окрашенных соединений.

В некоторых случаях турбидиметрические определения проводятся методом стандартных серий, описанным в лекции по фотометрическим методам анализа. Однако необходимость создания постоянных условий определения делают этот метод очень неточным, полуколичественным. Наиболее точные результаты и в турбидиметрии, и в нефелометрии дают фотометрические методы измерения интенсивности света в различных вариантах.

Довольно широко применяется метод турбидиметрического титрования. При этом могут быть использованы только такие реакции, которые протекают быстро, например реакции образования хлорида серебра или сульфата бария, и не могут быть использованы реакции, проведение которых требует сложных операций.


АППАРАТУРА

Для полуколичественного турбидиметрического метода с применением стандартных серий можно использовать колориметрические пробирки, описанные в гл. II. Наблюдение мутности исследуемого и стандартного растворов ведут вдоль оси пробирки.

Для точных нефелометрических и турбидиметрических исследований применяют нефелометры или турбидиметры, построенные по принципу визуальных или фотоэлектрических колориметров.

ГОСТ 4389-72 Вода питьевая.

Методы определения содержания сульфатов.

ТУРБИДИМЕТРИЧЕСКИЙ МЕТОД

Сущность метода

Метод основан на определении сульфат-иона в виде сульфата бария солянокислой среде с помощью гликолевого реагента. Гликоль введенный в реакционную смесь при осаждении сульфата бария стабилизует образующуюся суспензию BaSO4 и делает возможным турбидиметрическое микроопределение сульфатов. Чувствительность метода 2 мг/л SO42-

Аппаратура, материалы и реактивы


Информация о работе «Оптические методы анализа и их современное аппаратурное оформление: обзор WEB–сайтов фирм – продавцов химико-аналитического оборудования»
Раздел: Экология
Количество знаков с пробелами: 52670
Количество таблиц: 8
Количество изображений: 8

Похожие работы

Скачать
49078
0
2

... и кондуктометрия. Наиболее эффективными вольтамперометрическими методами являются дифференциальная импульсная полярография (ДИП) и инверсионный электрохимический анализ (ИЭА). Сочетание этих двух методов позволяет проводить определение с очень высокой чувствительностью - приблизительно 10-9 моль/л, аппаратурное оформление при этом несложно, что дает возможность делать анализы в полевых условиях. ...

0 комментариев


Наверх