2. Понятие генной инженерии

Вначале дадим определение генной, или генетической, инженерии согласно медицинской энциклопедии. Генная инженерия – совокупность экспериментальных приемов, позволяющих в лабораторных условиях создавать организмы с новыми наследственными признаками.

Проблема целенаправленного изменения наследственности издавна занимала умы ученых. Однако долгое время единственным путем получения организмов с полезными для человека свойствами были скрещивание и селекция, применявшиеся для выведения пород домашних животных, сортов растений.

В 20-х гг. нашего столетия была установлена способность ряда физических факторов и химических соединений вызывать изменения наследственных свойств организмов – мутации, что значительно расширило возможности исследователей. Однако нужные мутации возникали случайно и крайне редко, что требует большой и скрупулезной работы по выявлению организмов с полезными изменениями. Достижения современной молекулярной биологии и молекулярной генетики, давшие возможность вводить новые гены в природный набор генов организма или, наоборот, удалять ненужные гены, создали реальные предпосылки конструирования в лабораторных условиях носителей наследственной информации – молекул дезоксирибонуклеиновой кислоты (ДНК) с желаемым составом генов, т.е. создавать организмы с запрограммированными свойствами, вплоть до таких, которых не существует в природе.

Генная инженерия как самостоятельное направление исследований и практических разработок еще очень молода. Ее развитие началось в 60-х гг. 20 в., когда был сделан ряд открытий, предоставивших в распоряжение новые чрезвычайно точные “инструменты”, позволившие вносить различные изменения в молекулу ДНК. К этому времени ученые уже знали, как устроен, работает и воспроизводится ген, освоили приемы синтеза ДНК вне клетки. Это был основа генной инженерии. Но еще предстояло разработать способы выделения новых генов, соединения их в единую функционально активную и стабильно наследуемую структуру.

В 1969 г. И. Беквит, Дж. Шапиро, Л. Ирвин выделили из живой клетки ген, контролирующий синтез ферментов, необходимых кишечной палочке для усвоения молочного сахара – лактозы. В 1970 г. Д. Балтимор и одновременно Г. Темин и С. Мидзутани обнаружили и выделили в чистом виде фермент, который обеспечивает процесс построения молекулы ДНК на матрице РНК. Открытие этого фермента существенно упростило работу по получению копий отдельных генов. Поэтому довольно быстро сразу в нескольких лабораториях были синтезированы гены, контролирующие синтез молекулы глобина (белка, входящего в состав гемоглобина), интерферона и других белков.

Для введения генов в клетку используют генетические элементы бактерий – плазмиды, находящиеся не в хромосомах (т.е. ядре клетки), а в ее цитоплазме и представляющие собой небольшие молекулы ДНК. Некоторые из них способны внедряться в хромосому чужой бактериальной клетки, а затем самопроизвольно или под каким-либо воздействием покидать ее, захватывая с собой прилегающие хромосомные гены клетки-хозяина. Эти гены самовоспроизводятся в составе плазмид и образуют множество копий.

Успехи в объединении фрагментов ДНК различного происхождения в единую функционально активную структуру связаны с выделением ферментов рестриктаз, которые разрезают нитевую молекулу ДНК в строго определенных местах с образованием на концах фрагментов однонитевых участков – “липких концов”. За счет “липких концов” фрагменты ДНК легко объединяются в одну структуру. Используя такой подход, П. Бергу с сотрудниками удалось объединить в одной молекуле весь набор генов онкогенного вируса SV 40, часть генов бактериофага и один из генов кишечной палочки, т.е. получить молекулу ДНК, которая не существует в природе.

Методами генетической инженерии воздействуют не только на молекулу ДНК. Существуют, например, способы переноса целых хромосом в клетки животных другого вида. Т.о. в эксперименте получен гибрид клеток человека и мыши, человека и комара и др.

Для переноса генетического материала из одной клетки в другую генетическая инженерия широко использует тончайшие манипуляции на клеточном уровне – т. н. микрургию. Разработаны, например, методы введения отдельных генов в оплодотворенную яйцеклетку. Множество копий гена с помощью микропипетки вводят в ядро сперматозоида, только что проникшего в яйцеклетку. Затем эту яйцеклетку культивируют некоторое время в искусственной среде и затем имплантируют ее в матку животного, где завершается развитие зародыша. Такой опыт был проведен на крысах. Им был введен гормон роста, так что их потомство стало значительно крупнее их. Это привело к развитию гигантизма у подопытных мышей.

Работа в области генной инженерии регламентируется правилами, обеспечивающими жесткий контроль, обеспечивающими жесткий контроль, особые условия проведения эксперимента и гарантирующими безопасность экспериментаторов и окружающих. Эти правила были разработаны и утверждены многими странами, в т. ч. и Россией, после того, как было высказано опасение, что при манипулировании с генами микроорганизмов, в ходе перетасовок генов может возникнуть молекула ДНК с опасными для человека свойствами.

Значение достижений генной инженерии выходит далеко за рамки непосредственного изучения генетических механизмов. Методы генной инженерии могут быть применены для решения ряда проблем в области медицины, народного хозяйства, охраны окружающей среды.

Так, например, существует ряд заболеваний, обусловленных наследственной неспособностью организма усваивать некоторые вещества из-за отсутствия необходимых ферментов. В лабораторных условиях показана возможность методами генной инженерии вносить в клетки человека заимствованные от бактерий гены, компенсирующие наследственный дефект.

Генная инженерия обеспечила возможность сравнительно дешево производить в больших количествах практически любые белки. Десятки миллионов людей на Земном шаре страдают сахарным диабетом – болезнью, в основе которой лежит недостаток в организме инсулина. Для лечения диабета используют инсулин крупного рогатого скота или свиней. Но поскольку эти препараты несколько отличаются по своей структуре от инсулина человека, эффективность лечения диабета не всегда высокая. Инсулин человека можно получить также путем химического синтеза, но это очень дорого. Генная инженерия предоставила для лечения человека инсулин, продуцируемый микроорганизмами. Из клеток человека выделили ген, контролирующий синтез инсулина, встроили его в геном кишечной палочки и сейчас этот уникальный гормон вырабатывают в ферментерах на предприятиях микробиологической промышленности. С помощью методов генной инженерии решен вопрос получения интерферона – универсального противовирусного препарата. Единственным источником получения интерферона в силу его высокой видовой специфичности (для человека эффективен только человеческий интерферон) до последнего времени оставалась кровь доноров, переболевших вирусным заболеванием. Но для лечения вирусных заболеваний требуется такое количество интерферона, которое невозможно получить, даже если бы донорами стали все люди земного шара. Из клеток крови человека, перенесшего вирусное заболевание, выделили рибонуклеиновую кислоту, обеспечивающую синтез интерферона, на ее основе синтезировали ген интерферона и встроили его в геном бактериальных клеток, которые стали вырабатывать этот необходимый человеку белок. Располагая большим количеством интерферона, ученые смогли расшифровать всю последовательность его аминокислот и разработать более простые способы получения этого белка. Полученный таким образом интерферон оказался весьма эффективным при вирусных заболеваниях. Сходным путем решена проблема получения в достаточных количествах гормона роста. Гормон роста необходим для лечения карликовости, которая развивается у детей с генетически обусловленным недостаточным уровнем этого гормона в организме.

Генная инженерия позволяет получать вакцины принципиально нового типа. Бактерий научили вырабатывать белки оболочки вируса, которые и используют при вакцинации. Такие вакцины хотя и менее эффективны по сравнению со старыми, изготовленными из убитых вирусных частиц, но не содержат генетического материала вируса и поэтому безвредны. Ведутся работы по получению вакцин против гриппа, вирусного гепатита и др.

Генная инженерия имеет перспективы не только в медицине. Достижения генной инженерии открывают новую эру в развитии промышленного производства – эру биотехнологии, т.е. применения в промышленности биологических агентов и процессов. Биотехнология позволяет по-новому подойти к решению проблемы продовольствия в масштабах земного шара за счет резкого повышения эффективности сельскохозяйственного производства. Прогресс биотехнологии дает новые, значительно более эффективные методы защиты окружающей среды от промышленных загрязнений.


Информация о работе «Генетически модифицированные продукты»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 26824
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
10885
0
0

... , прав потребителей*, сфере защиты интеллектуальной собственности, этики и пр. Ныне во многих странах мира практически невозможно избежать употребления генетически модифицированных растений. Так, с большой долей вероятности можно сказать, что практически все продукты, произведенные с использованием кукурузного, соевого или хлопкового масла, содержат генетически измененный материал. По оценкам ...

Скачать
30922
0
0

... почти всегда должны оставаться одинаковыми. По мнению ведущих ученых, использование для производства продуктов питания сырья, которое состоит или производится с использованием генетически модифицированных организмов, в Украине должно быть запрещено или чрезвычайно взвешенно, поскольку влияние генетически модифицированных организмов на здоровье людей через несколько поколений еще недостаточно ...

Скачать
32302
0
0

... государственном уровне за производством и распространением товаров. Отсутствие должного контроля может привести к серьезным ошибкам и тяжелым последствиям, что и произошло при применении генетически модифицированных организмов (ГМО) в продуктах питания. Масштабное распространение в России ГМО, безопасность которых оспаривается учеными разных стран мира, ведет к бесплодию, всплеску онкологических ...

Скачать
32410
0
1

... в целях получения прибыли, к монополизации рынка продовольствия и не гарантирует безопасное и полезное для общества применение данной технологии.   Краткая история возникновения генетически модифицированных организмов Истоки развития генной инженерии растений лежат в 1977 году, когда и произошло открытие, позволившее использовать почвенный микроорганизм Agrobacterium tumefaciens в качестве ...

0 комментариев


Наверх