Применение радионуклидов в ядерной медицине
Введение
Достижения в области физики атомного ядра оказывают очень большое влияние на развитие почти всех отраслей человеческого знания. Овладение атомной энергией дало в руки ученых самых разнообразных специальностей новые средства и способы научного исследования. Неизмеримо выросли возможности научного познания. Научная медицина с самого своего зарождения черпает в физике и химии новые идеи и средства для предупреждения болезней и борьбы с ними. Стоит напомнить, например, что открытие в конце прошлого века рентгеновских лучей привело к тому, что теперь без рентгеновского аппарата не обходится даже небольшое лечебное учреждение. Исключительное значение имеет для медицины использование атомной энергии. Эта отрасль науки обогатилась новыми, весьма ценными методами изучения жизненных процессов, диагностики и лечения болезней.
Областью массового использования радионуклидов является ядерная медицина. На ее нужды расходуется более 50 % годового производства радионуклидов во всем мире. Как известно, в состав живого организма входят, помимо 5 основных элементов (кислорода, водорода, углерода, азота и кальция), еще 67 элементов периодической системы Менделеева, поэтому в настоящие время трудно представить клинику у нас или за рубежом, в которой при установлении диагноза заболевания не использовались бы различные радиоактивные препараты и меченные ими соединения. Радионуклиды применяются в ядерной медицине в основном в виде радиофармацевтических препаратов (РФП) для ранней диагностики заболеваний различных органов человека и для целей терапии. Радиофармацевтическим препаратом (РФП) называется химическое соединение, содержащие в своей молекуле определенный радиоактивный нуклид, разрешенное для введения человеку с диагностической или лечебной целью. Отличительной особенностью диагностического РФП при этом является отсутствие фармакологического эффекта. Облучение в медицине направлено на исцеление больного. Однако нередко дозы оказываются неоправданно высокими. Пациент должен получать минимальную дозу при обследовании. В связи с этим одной из важнейших задач, стоящих перед разработчиками РФП, является снижение доз облучения пациентов во время проведения различных исследований с использованием радионуклидов, то есть выбор таких радионуклидов и меченных ими соединений, применение которых позволяет получать необходимую диагностическую информацию при минимально возможных дозах облучения пациентов.
Систематически радионуклиды для медицинских целей стали применять с начала 40-х годов. Именно тогда была установлена строгая закономерность распределения радиоактивного йода при различных патологических состояниях щитовидной железы. В дальнейшем, использование соединений, меченных радиоактивными нуклидами, позволило определить локализацию и размеры первичных опухолей, выявить распространение опухолевых процессов, контролировать эффективность лекарственного лечения. Благодаря большому разнообразию радионуклидов и меченных ими препаратов в настоящее время можно изучать практически любую физиологическую и морфологическую системы организма человека: сердечно-сосудистую и кроветворную, мочевыделительную и водно-солевого обмена, дыхательную и пищеварительную, костную и лимфатическую и т.п.
1. Радиоактивность и радиоактивные изотопы
Радиоактивные изотопы и соединения, меченные радиоактивными изотопами, широко применяются в самых разных областях человеческой деятельности. Промышленность и технологический контроль, сельское хозяйство и медицина, средства связи и научные исследования — охватить весь спектр применения радиоактивных изотопов практически невозможно, хотя все они возникли чуть более, чем за 100 лет.
Радиоактивность (radioactivity) — это обозначение удивительного явления природы, открытого Беккерелем в конце XIX века, суть которого заключается в самопроизвольном спонтанном превращении атомных ядер некоторых элементов в другие, которое сопровождается выделением трёх видов "лучей".
Природу лучей установили быстро: α-лучи — это двукратно ионизированные атомы гелия, β-лучи — это электроны, γ-лучи — это жесткое коротковолновое электромагнитное излучение. Элементы, способные к таким превращениям стали называться радиоактивными, т.е. способными к этому превращению. В зависимости от типа излучения, радиоактивные атомы стали определять соответственно как α, β или γ излучатели или источники. Правда, вскоре было установлено, что некоторые радиоактивные атомы излучают сразу два (а возможно, и три) вида лучей, поэтому такая классификация дополняется пояснениями — это "чистый" α-излучатель или имеется сопутствующее γ-излучение.
К первоначальным трём типам ядерных превращений (α, β и γ — радиоактивный распад) добавились новые, однако, общие закономерности для всех остались неизменными. В конце ХХ века было рекомендовано термин "изотоп" заменить на "нуклид" и, соответственно, "радиоактивный изотоп" на "радионуклид".[3]В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д.И.Менделеевым была открыт периодический закон химических элементов.
Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемой на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик – сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные масс, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным. Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада: радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного.
В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце – последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.В настоящее время известно 106 химических элементов. Из них только 81 элемент имеет как стабильные, так и радиоактивные изотопы. Для остальных 25 элементов известны только радиоактивные изотопы. В общей сложности в настоящее время доказано существование около 1700 нуклидов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины). Из этих нуклидов только 271 нуклид стабилен, остальные радиоактивные. Около 300 из них находят или могут найти практическое применение в различных сферах человеческой деятельности. Основные источники производства радионуклидов для ядерной медицины следующие: ядерные реакторы, ускорители заряженных частиц, как правило, циклотроны и радионуклидные генераторы (как вторичный источник). В мировом объеме производства радионуклидов громадная его часть -–на ускорителях заряженных частиц, которые в большинстве своем являются циклотронами различных типов и уровней. Этот факт обычно связывают с большим количеством исследовательских их доступностью в самые первые годы развития ядерной медицины на рубеже 40-х и 50-х годов, а также с дешевизной производства на них большинства радионуклидов. К середине 80-годов ежегодная наработка радионуклидов только для ядерной медицины на реакторах всего мира достигла в стоимостном выражении 500 млн. долларов.
Однако за последние два десятилетия обнаруживается существенный рост в использовании ускорителей заряженных частиц для указанных целей, который обьясняется более приемлемыми ядерно-физическими характеристиками получаемых с их помощью нейтронодефицитных радионуклидо.[4]
Радиация по самой своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще установленную цепь событий, приводящую к раку или к генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.
Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения – как правило, не ранее чем через одно – два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению появляются лишь в следующем или последующем поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению. За единицу активности (радиоактивности) радиоактивного вещества в Международной системе СИ принята скорость радиоактивного распада, равная 1 распаду в секунду, которая получила название беккерель — Бк (в английской версии Bq). Устаревшая, но по-прежнему используемая единица активности кюри — Ки (в английской версии Ci) — это активность препарата, эквивалентная активности 1 г металлического радия-226 и равная 3,7х1010 распадов в секунду, т.е. 3,7х1010 Бк.
Радиоактивный распад — это превращение ядра атома радиоактивного элемента, которое сопровождается выделением продуктов такого превращения. Например, электронный захват представляет собой поглощение электрона ядром с выделением г-кванта, и такой тип "радиоактивного распада" более точно следует называть "ядерным превращением". Впрочем, оба термина используются в литературе на равных, несмотря на предпочтительность "ядерного превращения".Природная радиоактивность обусловлена радиоактивными изотопами естественного происхождения, присутствующими во всех оболочках земли — литосфере, гидросфере, атмосфере и биосфере. Сохранившиеся на нашей планете радиоактивные элементы условно могут быть разделены на три группы:
1. радиоактивные изотопы, входящие в состав радиоактивных семейств, родоначальниками которых являются уран (U238), торий (Th232) и актиний–уран (AcU235);
2. генетически не связанные с ними радиоактивные элементы: калий (К40), кальций (Ca48), рубидий (Rb87) и др;
3. радиоактивные изотопы, непрерывно возникающие на земле в результате ядерных реакций, под воздействием космических лучей. Наиболее важные из них — углерод (С14) и тритий (Н3).Естественные радиоактивные вещества широко распространены во внешней среде. Это в основном долгоживущие изотопы с периодом полураспада 108–1016 лет. В процессе распада они испускают a- и b-частицы, а также g-лучи.Радиоактивные изотопы имеют широкий спектр применения.Метод меченых атомов для исследования биологических процессов в организме основан на том, что химические свойства всех изотопов одинаковы, а обнаружить радиоактивный (меченый) атом очень легко. Метод применяется в биологии, физиологии, медицине. Радиоактивные изотопы — источники излучений. Эти изотопы применяются в медицине для постановки диагноза и лечения злокачественных опухолей. Радиоактивные изотопы применяются в сельском хозяйстве для селекции.
... число дополнительных смертей, случай/год. Рентгенография 1,03*105 1700 Рентгеноскопия 2,12*105 3500 Флюрография 0,68*105 1120 РФП 0,09*105 132 Всего 3,92*105 6452 -2- Способы получения радионуклидов для ядерной медицины. Основные источники производства радионуклидов для ядерной медицины следующие: ядерные реакторы, ускорители ...
... или химической обработки или теряющих при этом свои функциональные свойства, имеет большое значение. Широкое использование сульфаниламидов и антибиотиков в медицине и ветеринарии обусловливает особый интерес к стерильности этих препаратов и способам стерилизации их. Сульфаниламиды, обладая высокой радиорезистентностью, без особых трудностей подвергаются радиационной стерилизации. При дозе 2,5 ...
... области, находящиеся на территории Семипалатинского полигона подверглись влиянию радиоактивных элементов, которое проявляется как на молекулярном, клеточном уровне, так и на уровне целого организма. Основными радионуклидами, определяющими характер загрязнения, в нашей области является стронций-90. Некоторые районы Павлодарской области оказалась наиболее загрязнёнными областями Республ
... приводит к нарушениям в обмене веществ и приостанавливает размножение клеток (в том числе и здоровых). Поэтому в случаях использования лучевой терапии особое внимание уделяется тому, чтобы максимально оградить здоровые ткани от воздействия облучения. Ядерная физика в геологии Нетрудно предположить, что залежи минералов, обладающих естественной радиоактивностью, обнаружить несложно. Методы ...
0 комментариев