2. Лимфосорция
Представленную выше особенность цитоагрессивного действия сорбентов следует учитывать и при сочетании наружного отведения лимфы и лимфосорбцией с помощью угольных сорбентов и ионообменных смол, таких как КУ-2-8 (преимущественная сорбция аммония) или МХТИ-2 (для сорбции билирубина и аммония). Основными условиями проведения такой операции является надежное дренирование грудного лимфатического протока (ГЛП) и обеспечение значительного дебита лимфы – не менее 2,5 л. Схема лимфосорбции в первом приближении выглядит следующим образом: дренирование ГЛП – достижение устойчивого лимфотока, лимфостимуляция – пропускание лимфы через сорбционную колонку – внутривенная реинфузия очищенной лимфы.
При высоком лимфотоке и значительном давлении в лимфатической системе (15-17 см вод.ст.) возможно прямое проведение лимфосорбции после создания перфузионного контура: канюлированный грудной лимфатический проток – сорбционная колонка – центральная вена. Как правило, в практике интенсивной терапии используют непрямой метод лимфосорбции, пропуская через колонку лимфу, собираемую в инфузионную емкость с небольшой дозой гепарина (мешок, флакон) на протяжении определенного времени с хранением ее в условиях холодильника при +4о С. Возвращение очищенной лимфы больному происходит поэтапно, по мере забора следующих порций лимфы. Предпочтительным путем возврата детоксицированной лимфы некоторые исследователи считают реканализированную пупочную вену (Стащук В.Ф. , 1991), полагая, что именно макрофаги печени обеспечат более полную детоксикацию реинфузируемой лимфы. В целом данная операция предполагает участие в лечебном процессе хирургов, способных выполнять как дренирование грудного лимфатического протока, так и канюлирование портальной системы через пупочную вену.
Методы экстракорпоральной детоксикации с моделированием основных экскреторных механизмов. Моделирование этой части функциональной системы детоксикации достигается использованием мембранных технологий. Одним из первых продуктивных решений моделирующих физико-химические и структурные принципы экскреторных органов явилось применение гемодиализа (ГД). Именно в этом направлении достигнут и максимальный технический прогресс: недаром его конструктивное воплощение образно называют аппаратом «искусственная почка». ГД обеспечивает возможность извлечения из плазмы крови прежде всего водорастворимых веществ, которые могут считаться эндотоксическими субстанциями.
Принцип работы любого аппарата ГД основан на диффузии низкомолекулярных соединений по осмотическому градиенту и градиенту концентрации из экстракорпорально забираемой крови. Кровь пропускают через специальное устройство – диализатор, содержащее полупроницаемую мембрану, с другой стороны от которой протекает диализирующий раствор, в который и происходит диффузия. За счет этого в процессе ГД осуществляется элиминация из крови токсических субстанций низкой молекулярной массы посредством диффузии, осмоса и частично конвекции. С помощью специального приема (регуляция гидростатического давления в перфузионном контуре аппарата) можно добиваться удаления некоторого количества ультрафильтрата плазмы крови для уменьшения избытка воды в организме больного.
Каждый аппарат для ГД состоит из двух основных частей, образующих контур экстракорпоральной очистки крови: диализатора, где происходит сам процесс очистки крови, и монитора, позволяющего контролировать и регулировать ход ГД: скорость протекания крови и диализата, его температуру и состав, величину трансмембранного давления и ультрафильтрации, целостность диализирующей мембраны и ряда других. Вне аппарата при его стационарном размещении необходима еще одна функциональная составляющая - блок водоподготовки, учитывая высокий расход воды: не менее 150 л на один сеанс ГД. В мониторах аппаратов, функционирующих в режиме на «слив диализата», имеется еще одна функциональная часть - блок приготовления диализата из очищенной воды и концентратов по ходу проведения ГД. Возможны конструктивные решения с регенерацией используемого диализата, что позволяет использовать такие аппараты ГД вне стационара, в чрезвычайных ситуациях.
В практике интенсивной терапии ГД, как вид активной детоксикации, чаще всего используют для лечения эндотоксикоза, протекающего с тяжелыми нарушениями функции почек. При этом преследуется цель усиления экскреции низкомолекулярных продуктов белкового обмена и избытка электролитов (калий, сульфаты, фосфаты) и в меньшей степени нормализация кислотно-основного равновесия. Конкретные показания к ГД определяются клиническими проявлениями ретенционной эндогенной интоксикации, степенью и темпом нарастания азотемии, выраженностью гиперкалиемии, гипергидратации, появлением расстройств сознания, нарушений ритма сердечных сокращений. В некоторых случаях с опасностью быстрого нарастания эндогенной интоксикации ГД используют раньше, в так называемом опережающем режиме, что позволяет сдержать развитие или даже корригировать преморбидные расстройства гомеостаза, создает условия для благоприятного течения тканевых обменных процессов, ускоряет регенерацию поврежденного канальцевого эпителия почек.
Подключение аппарата ГД к сосудистой системе больного в практике интенсивной терапии обеспечивают артерио-венозным (с помощью шунта Скрибнера) или вено-венозным способом. В последнем варианте может быть использована катетеризация одной вены (обычно верхней полой) спаренным или двупросветным катетером, через короткую ветвь которого кровь забирают в аппарат, используя перфузионный насос, а через длинную ветвь реинфузируют очищенную в диализаторе кровь. При отсутствии такого катетера может быть выполнена катетеризация верхней полой вены раздельно с двух сторон или нижней полой вены раздельно двумя катетерами, заведенными на разную глубину через одну бедренную вену.
Поддержание свободного тока крови в диализаторе обеспечивается за счет общей или так называемой регионарной гепаринизации (т.е. только крови, поступающей непосредственно в аппарат ГД). Последний вариант стабилизации предпочтителен в раннем послеоперационном периоде, учитывая наличие свежих ран у хирургических больных или очагов повышенной кровоточивости, патогенетически связанных с заболеванием или осложнением (острые язвы желудочно-кишечного тракта), и вместе с тем позволяет проводить ГД даже при умеренных системных нарушениях гемостаза.
Агрессивность ГД может рассматриваться с позиции его влияния на транспорт О2 в организме больного и легочный газообмен. Причин таких расстройств несколько, и они особенно отчетливы при ГД на стандартных мембранах и со стандартным диализатом. К ним следует отнести активацию комплемента крови, которая вызывается целлюлезными мембранами, что выливается в паренхиматозные повреждения со снижением РаО2 и повышением РаСО2, уменьшение сердечного выброса.
У большинства пациентов определенное количество крови расходуется на заполнение аппарата ГД, что требует своевременной инфузионной поддержки до начала сеанса, во время его проведения и завершения. Тем более что в процессе процедуры, продолжающейся нередко 4 -5 ч, происходят несомненные потери клеток крови, как внутрисосудистые, так и на мембране диализатора. Гемотрансфузия по ходу ГД, особенно если для нее используют компонентные среды, оказывает минимальное неблагоприятное действие на состояние и внутреннюю среду такого пациента.
Учитывая агрессивность процедуры по ходу проведения ГД необходим не только функциональный контроль, но и лабораторный мониторинг состояния внутренней среды больного: основные электролиты и КОС крови, содержание токсических субстанций в крови и диализате, что позволяет определить эффективность выведения маркеров эндогенной интоксикации.
Основными преимуществами ГД перед другими технологиями для лечения ОПН считаются: а) высокая эффективность детоксикации при гиперкалиемии, значительной уремической интоксикации и гиперкатаболизме; б) короткий период антикоагуляции; в) возможность сохранения подвижности пациента между сеансами ГД.
Одновременно эта процедура детоксикации имеет и ряд недостатков, которые сдерживают ее применение в ОРИТ общего типа:
- короткие периоды детоксикации (3-5 ч), за которыми следует продолжительный промежуток накопления эндотоксинов;
- ограниченный объем удаляемой за сеанс задержанной жидкости с возможностью рецидива синдрома гипергидатации между сеансами ГД;
- трудно учитываемые колебания плазменной концентрации лекарственных средств, применяемых у данного больного по ходу интенсивной терапии;
- необходимость сложной аппаратуры, в том числе системы водоподготовки.
Противопоказаний для ГД мало, основными считают некомпенсированные расстройства гемодинамики в связи с гиповолемией или нарушениями метаболизма миокарда, неостановленное внутреннее кровотечение, внутричерепные или внутримозговые кровоизлияния.
Изолированная ультрафильтрация (сухой диализ) считается другой близкой ГД моделью нефрона и, прежде всего, клубочковой фильтрации. В этом случае элиминация жидкой части крови происходит не столько за счет осмотического градиента, столько за счет высокого трансмембранного давления в мембранном массообменном устройстве. Жидкая часть крови при этом фильтруется через диализирующие мембраны, заключенные в стандартные диализаторы для ГД, под давлением более 200-220 мм рт. ст. на фоне относительно высокой перфузии (200-400 мл/мин), что препятствует блокированию пор в диализирующей мембране.
Ультрафильтрация не требует сложной аппаратуры (диализатор и надежно работающий вакуум-отсос), но практически не может считаться детоксикационной, а только чисто дегидратационной процедурой. При применении максимально допустимого трансмембранного давления, равного 350 мм рт. ст., в контуре со стандартным диализатором за 5 ч процедуры удается получить максимально 6 л ультрафильтрата крови. Этого явно недостаточно для достижения необходимого детоксикационного эффекта при выраженной эндогенной интоксикации. В таких обстоятельствах предпочтительно использовать массообменные устройства с мембранами более высокой гидравлической проницаемостью, так называемые хайфлакс, из полиамида, поликарбоната, полисуфона или полиакрилнитрита. Благодаря этому создается основа для еще одной мембранной технологии, нашедшей применение в активной детоксикации на фоне острого эндотоксикоза, а именно для гемофильтрации.
... . В то же время, ликвидация эндогенной интоксикации предупреждает развитие необратимости патологического процесса и действительно улучшает результаты лечения разнообразных заболеваний. 3. Методы экстракорпоральной детоксикации. Диализ - метод освобождения организма от низкомолекулярных веществ посредством диффузии их через полупроницаемую мембрану в жидкую или газообразную среду по ...
... , когда быстрое разрешение эндогенной интоксикации может быть достигнуто с помощью экстракорпоральных процедур (гемодиализа, гемофильтрации). 3. Другие способы Другие способы интракорпоральной активной детоксикации (искусственная диаррея, кишечный лаваж, легочный диализ) в клинических ситуациях с развитием острого эндотоксикоза играют вспомогательную роль. У значительной части таких больных ...
... нашел широкое применение в лечении аллергических и аутоиммунных заболеваний, позволяя значительно снизить дозы глюкокортикоидных препаратов и других медикаментов. ГС все чаще используется как метод интенсивной терапии больных с заболеваниями печени, при вирусном и хроническом гепатите, менингококковой инфекции, лептоспирозе, рассеянном склерозе. Возможно использование ГС в комплексном лечении ...
... сознания, гипоксией, выраженной сердечной недостаточностью, олигурией, паралитической непроходимостью кишечника. В крови определяется высокая концентрация креатинина, мочевины, билирубина. МАРКЕРЫ ЭНДОГЕННОЙ ИНТОКСИКАЦИИ. 1. Лейкоцитоз (увеличение количества лейкоцитов в венозной крови более 10*10 /л. При оценке степени выраженности интокскации лейкоцотоз следует учитывать наряду с другими ...
0 комментариев