2.2. Анализ и принятие управленческих решений.
В условиях рыночной экономики степень неопределенности экономического поведения субъектов рынка достаточно высока[13]. В связи с этим большое практическое значение приобретают методы перспективного анализа, когда нужно принимать управленческие решения, оценивая возможные ситуации и делая выбор из нескольких альтернативных вариантов[14].
Теоретически существует четыре типа ситуаций, в которых необходимо проводить анализ и принимать управленческие решения, в том числе и на уровне предприятия: в условиях определенности, риска, неопределенности, конфликта. Рассмотрим каждый из этих случаев .
1. Анализ и принятие управленческих решений в условиях определенности.
Это самый простой случай: известно количество возможных ситуаций (вариантов) и их исходы. Нужно выбрать один из возможных вариантов . Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов . Рассмотрим две возможные ситуации :
а) Имеется два возможных варианта: n=2.
В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов[15]. Последовательность действий здесь следующая:
· определяется критерий, по которому будет делаться выбор;
· методом “прямого счета” исчисляются значения критерия для сравниваемых вариантов;
· вариант с лучшим значением критерия рекомендуется к отбору.
Возможны различные методы решения этой задачи. Как правило, они подразделяются на две группы:
Методы, основанные на дисконтированных оценках;
Методы, основанные на учетных оценках.
Первая группа методов основывается на следующей идее. Денежные доходы, поступающие на предприятие в различные моменты времени, не должны суммироваться непосредственно; можно суммировать лишь элементы приведенного потока. Если обозначить F1,F2 ,....,Fn - прогнозируемый денежный поток по годам, то i-й элемент приведенного денежного потока Рi рассчитывается по формуле:
Pi = Fi / ( 1+ r ) i
где r- коэффициент дисконтирования.
Назначение коэффициента дисконтирования состоит во временной упорядоченности будущих денежных поступлений (доходов) и приведении их к текущему моменту времени. Экономический смысл этого представления в следующем : значимость прогнозируемой величины денежных поступлений через i лет ( Fi ) с позиции текущего момента будет меньше или равна Pi . Это означает так же , что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности . Используя эту формулу , можно приводить в сопоставимый вид оценку будущих доходов , ожидаемых к поступлению в течение ряда лет. В этом случае коэффициент дисконтирования численно равен процентной ставке , устанавливаемой инвестором , т.е. тому относительному размеру дохода , который инвестор хочет или может получить на инвестируемый им капитал .
Итак, последовательность действий аналитика такова (расчеты выполняются для каждого альтернативного варианта):
* рассчитывается величина требуемых инвестиций (экспертная оценка) , IC;
* оценивается прибыль (денежные поступления) по годам Fi;
* устанавливается значение коэффициента дисконтирования , r;
* определяются элементы приведенного потока , Pi;
* рассчитывается чистый приведенный эффект (NPV) по формуле:
NPV= E Pi - IC
· сравниваются значения NPV ;
· предпочтение отдается тому варианту, который имеет больший NPV (отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта).
Вторая группа методов продолжает использование в расчетах прогнозных значений F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции. Последовательность действий аналитика в этом случае такова :
* рассчитывается величина требуемых инвестиций , IC ;
* оценивается прибыль ( денежные поступления ) по годам , Fi ;
* выбирается тот вариант, кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции.
б) Число альтернативных вариантов больше двух .
n > 2
Процедурная сторона анализа существенно усложняется из-за множественности вариантов, техника “ прямого счета “ в этом случае практически не применима. Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ”. Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу, как пример выбора оптимального варианта из набора альтернативных. Суть задачи состоит в следующем .
Имеется n пунктов производства некоторой продукции (а1,а2,...,аn) и k пунктов ее потребления (b1,b2,....,bk), где ai - объем выпуска продукции i - го пункта производства , bj - объем потребления j - го пункта потребления. Рассматривается наиболее простая, так называемая “закрытая задача ”, когда суммарные объемы производства и потребления равны. Пусть cij - затраты на перевозку единицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов здесь может быть очень большим , что исключает применение метода “ прямого счета[16] ” . Итак необходимо решить следующую задачу :
E E Cg Xg -> min
E Xg = bj E Xg = bj Xg >= 0
Известны различные способы решения этой задачи -распределительный метод потенциалов и др. Как правило, для расчетов применяется ЭВМ.
При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации, предполагающие множественные расчеты на ЭВМ[17]. В этом случае строится имитационная модель объекта или процесса (компьютерная программа), содержащая b-е число факторов и переменных, значения которых в разных комбинациях подвергается варьированию. Таким образом, машинная имитация - это эксперимент, но не в реальных, а в искусственных условиях. По результатам этого эксперимента отбирается один или несколько вариантов , являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев .
2 . Анализ и принятие управленческих решений в условиях риска.
Эта ситуация встречается на практике наиболее часто. Здесь пользуются вероятностным подходом , предполагающим прогнозирование возможных исходов и присвоение им вероятностей[18] . При этом пользуются:
а) известными, типовыми ситуациями ( типа - вероятность появления герба при бросании монеты равна 0.5 ) ;
б) предыдущими распределениями вероятностей ( например, из выборочных обследований или статистики предшествующих периодов известна вероятность появления бракованной детали ) ;
в) субъективными оценками, сделанными аналитиком самостоятельно либо с привлечением группы экспертов.
Последовательность действий аналитика в этом случае такова:
· прогнозируются возможные исходы Ak , k = 1 ,2 ,....., n;
· каждому исходу присваивается соответствующая вероятность pk , причем
· Е рк = 1
· выбирается критерий (например максимизация математического ожидания прибыли ) ;
· выбирается вариант, удовлетворяющий выбранному критерию.
Пример: имеются два объекта инвестирования с одинаковой прогнозной суммой требуемых капитальных вложений. Величина планируемого дохода в каждом случае не определенна и приведена в виде распределения вероятностей :
Проект А | Проект В | ||
Прибыль | Вероятность | Прибыль | Вероятность |
3000 | 0. 10 | 2000 | 0 . 10 |
3500 | 0 . 20 | 3000 | 0 . 20 |
4000 | 0 . 40 | 4000 | 0 . 35 |
4500 | 0 . 20 | 5000 | 0 . 25 |
5000 | 0 . 10 | 8000 | 0 . 10 |
Тогда математическое ожидание дохода для рассматриваемых проектов будет соответственно равно:
У (Да) = 0 . 10 * 3000 + ......+ 0 . 10 * 5000 = 4000
У ( Дб ) = 0 . 10 * 2000 +.......+ 0 . 10 * 8000 = 4250
Таким образом, проект Б более предпочтителен. Следует , правда , отметить , что этот проект является и относительно более рискованным , поскольку имеет большую вариацию по сравнению с проектом А ( размах вариации проекта А - 2000 , проекта Б - 6000 ) .
В более сложных ситуациях в анализе используют так называемый метод построения дерева решений[19]. Логику этого метода рассмотрим на примере.
Пример: управляющему нужно принять решение о целесообразности приобретения станка М1 либо станка М2 . Станок М2 более экономичен, что обеспечивает больший доход на единицу продукции, вместе с тем он более дорогой и требует относительно больших накладных расходов:
Постоянные расходы | Операционный доход на единицу продукции | |
Станок М1 | 15000 | 20 |
Станок М2 | 21000 | 24 |
Процесс принятия решения может быть выполнен в несколько этапов:
Этап 1 . Определение цели.
В качестве критерия выбирается максимизация математического ожидания прибыли.
Этап 2 . Определение набора возможных действий для рассмотрения и анализа (контролируются лицом, принимающим решение)[20]
Управляющий может выбрать один из двух вариантов:
а1 = {покупка станка М1}
а2 = {покупка станка М2}
Этап 3 . Оценка возможных исходов и их вероятностей (носят случайный характер).
Управляющий оценивает возможные варианты годового спроса на продукцию и соответствующие им вероятности следующим образом:
х1 = 1200 единиц с вероятностью 0 . 4
х2 = 2000 единиц с вероятностью 0 . 6
Этап 4 . Оценка математического ожидания возможного дохода:
Е (Да) = 9000 * 0 . 4 + 25000 * 0 . 6 = 18600
Е ( Дб ) = 7800 * 0 . 4 + 27000 * 0 . 6 = 19320
Таким образом, вариант с приобретением станка М2 экономически более целесообразен .
3 . Анализ и принятие управленческих решений в условиях неопределенности.
Эта ситуация разработана в теории, однако на практике формализованные алгоритмы анализа применяются достаточно редко[21]. Основная трудность здесь состоит в том, что невозможно оценить вероятности исходов. Основной критерий - максимизация прибыли - здесь не срабатывает , поэтому применяют другие критерии :
* максимин (максимизация минимальной прибыли)
* минимакс (минимизация максимальных потерь)
* максимакс (максимизация максимальной прибыли) и др.
4 . Анализ и принятие управленческих решений в условиях конфликта.
Наиболее сложный и мало разработанный с практической точки зрения анализ. Подобные ситуации рассматриваются в теории игр . Безусловно на практике эта и предыдущая ситуации встречаются достаточно часто . В таких случаях их пытаются свести к одной из первых двух ситуаций либо используют для принятия решения неформализованные методы .
Оценки, полученные в результате применения формализованных методов, являются лишь базой для принятия окончательного решения; при этом могут приниматься во внимание дополнительные критерии, в том числе и неформального характера .
... решения. 3. Выполнение решения. ¨ Доведение решений до конкретных исполнителей; ¨ Разработка мер поощрений и наказаний; ¨ Контроль за выполнением решений. 2.МЕТОДЫ ПРИНЯТИЯ УПРАВЛЕНЧЕСКОГО РЕШЕНИЯ Методы - это конкретные способы, с помощью которых может быть решена проблема. 1. Декомпозиция - Представление сложной проблемы, как совокупности ...
... конкордации: Полученная величина показывает среднюю степень согласованности мнений экспертов. 4. ОРГАНИЗАЦИЯ И КОНТРОЛЬ ПРИНЯТИЯ РЕШЕНИЙ Под организацией применительно к управленческим решениям принимается комплекс работ по их подготовке к его реализации и организации ее выполнения. Для успешной реализации принимаемых решений необходимо разработать механизм их осуществления, ...
... контроля – это, с одной стороны, процесс установления стандартов, измерений фактически достигнутых результатов и их отклонение от установленного стандарта; с другой – процесс отслеживания хода выполнения принятых управленческих решений и оценки достигнутых результатов в ходе их выполнения. После оценки результатов ЛПР может выбрать одну из двух линий поведения: - ничего не предпринимать. ...
... , в которых необходимо проводить анализ и принимать управленческие решения, в том числе и на уровне предприятия: в условиях определенности, риска, неопределенности, конфликта. Анализ и принятие управленческих решений в условиях определенности, риска и неопределенности рассматривался в главе 2.2. поэтому в этом разделе я рассмотрю лишь принятие управленческих решений в условиях неопределенности ( ...
0 комментариев