1.2. Подходы к исследованию систем.
Важным для системного подхода является определение структуры системы — совокупности связей между элементами системы, отражающих их взаимодействие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т. е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к исследованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный и функциональный.
При структурном подходе выявляются состав выделенных элементов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. Последняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры — это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.
Менее общим является функциональное описание, когда рассматриваются отдельные функции, т. е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие системы S с внешней средой Е, то свойства могут быть выражены в виде либо некоторых характеристик элементов SiV) и подсистем Si системы, либо системы S в целом.
При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем. Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.
Проявление функций системы во времени S(t), т. е. функционирование системы, означает переход системы из одного состояния в другое, т. е. движение в пространстве состояний Z. При эксплуатации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система S может оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.
Следует отметить, что создаваемая модель М с точки зрения системного подхода также является системой, т. е. S'=S'(M), и может рассматриваться по отношению к внешней среде Е. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели, в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системы S. Правильное понимание взаимосвязей как внутри самой модели М, так и взаимодействия ее с внешней средой Е в значительной степени определяется тем, на каком уровне находится наблюдатель.
Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классический подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели М на основе классического (индуктивного) подхода представлен на рис. 1.1, а. Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы, т. е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента К будущей модели. Совокупность компонент объединяется в модель М.
Таким образом, разработка модели М на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классический подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличительные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возникновение нового системного эффекта.
С усложнением объектов моделирования возникла необходимость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему S как некоторую подсистему какой-то метасистемы, т. е. системы более высокого ранга, и вынужден перейти на позиции нового системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач, но и создавать систему, являющуюся составной частью метасистемы.
Системный подход получил применение в системотехнике в связи с необходимостью исследования больших реальных систем, когда сказалась недостаточность, а иногда ошибочность принятия каких-либо частных решений. На возникновение системного подхода повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействий внешней среды Е. Все это заставило исследователей изучать сложный объект не изолированно, а во взаимодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.
Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорци-1 овальных их значимости, на всех этапах исследования системы 5" и построения модели М'. Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного — формулировки цели функционирования. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которыенакладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, элементы Э и осуществляется наиболее сложный этап синтеза — вы-< бор В составляющих системы, для чего используются специальные критерии выбора КВ.
При моделировании необходимо обеспечить максимальную эффективность модели системы, которая определяется как некоторая разность между какими-то показателями результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.
... цепи W1(s) = Wp(s) представлено как параллельное соединение простейших звеньев. 2.9 Неопределенность моделей систем управления Математические модели не отражают исчерпывающим образом динамические свойства систем управления в силу идеализации и упрощений, неизбежных при моделировании, неточной реализации алгоритмов управления и изменений характеристик объектов и других элементов в ...
ельно. Моделями словесного описания можно считать, например, должностные инструкции, штатное расписание, деловые письма (модель некоторой ситуации), а также так называемые модели систем управления: бюрократическую модель Макса Вебера, неоклассическую модель, профессиональную модель и модель принятия решений Герберта Саймона; ü модели графического описания используются для изучения ...
... мировой войны. В учебниках по экономике обычно разбирается «дилемма заключенного» и точка равновесия по Нэшу (ему присуждена Нобелевская премия по экономике за 1994 г.)[23]. Моделирование процессов управления предполагает последовательное осуществление трех этапов исследования. Первый - от исходной практической проблемы до теоретической чисто математической задачи. Второй – внутриматематическое ...
... них 10 час. – обзорные лекции, 4 час. –практические занятия, 6 час. – лабораторные работы на ЭВМ. Рабочая программа курса «Моделирование систем радиосвязи и сетей радиовещания». СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 1 Введение Цели и задачи дисциплины. Основные понятия теории моделирования систем. Использование моделирования при исследовании и проектировании сетей ...
0 комментариев