1.3.6 Метод главных компонентов
Метод главных компонентов используется при рассмотрении некоторого множества случайных значений показателей Y в целях определения общих для них факторов (компонентов), от которых все они зависят. Степень зависимости i-го показателя от j-го компонента отражается величиной а, называемой нагрузкой i -го показателя на j-й компонент. Результатом анализа является модель главных компонентов, в которой каждый показатель представлен суммой произведений компонентов и их нагрузок:
где f — центрированные, нормированные и некоррелированные компоненты. Модель главных компонентов показывает, что и в какой степени определяет исследуемые показатели, а также объясняет связи между ними.
1.3.7 Факторный анализ
Факторный анализ по своей сути совпадает с методом главных компонентов, однако позволяет представить показатели через меньшее количество факторов (компонентов), поэтому используется при исследовании сложных систем управления, с большим числом показателей и сложными взаимосвязями между ними. Предполагается, что за множеством показателей системы стоит небольшое число независимых скрытых параметров, называемых факторами.
1.4 Детерминированные методы анализа систем управления
Сущность методов детерминированного анализа состоит в нахождении оценок влияния изменения параметров на величину изменения показателя. Используется для исследования процессов и систем управления по результатам экспериментов на математической модели с неслучайными (детерминированными) переменными.
Применение детерминированных методов зависит от возможности дифференцирования функции и числа переменных. При алгоритмическом задании функции (когда она определяется последовательностью математических выражений и при большом числе переменных) используется инфлюентный анализ.
Суть инфлюентного анализа состоит в оценке влияния параметров х, на величину изменений показателя Y. В этом случае Д У представляется в виде алгебраической суммы
1.5 Синтез систем управления методами оптимизации
1.5.1 Синтез систем управления методами безусловной оптимизации
Методы нулевого порядка используют, если производную исследуемой функции найти нельзя или существуют разрывы функций.
Метод покоординатного спуска. Сущность метода состоит в том, что производится раздельная оптимизация по параметрам функций: один из параметров считается изменяемым, а остальные фиксируются при некоторых значениях; затем изменяемым становится следующий параметр, а предыдущий принимает значение, полученное при предыдущей оптимизации (на предыдущем шаге). Процесс продолжается до окончания перебора всех параметров. Метод прост в реализации и эффективен для малого числа параметров.
Метод конфигураций. Сущность метода заключается в поиске направления изменения параметров относительно некоторой выбранной начальной точки (строится конфигурация направления поиска). Вначале обследуют ее окрестность (по параметрам) и выбирают направление изменения параметров, ориентируясь на уменьшение исследуемой функции. Выбрав направление, начинают движение большими шагами до тех пор, пока функция уменьшается. Если этот процесс прекратился (либо его совсем не произошло), то шаг уменьшают с целью определения точки, от которой прекратилось уменьшение функции. Затем процесс повторяют от новой базовой точки или изменяют направление от предыдущей. Метод используется для задач с большим числом параметров, когда покоординатный спуск становится неэффективным.
Метод случайного поиска. Метод имеет большое количество модификаций. Общее для них состоит в использовании элемента случайности (путем розыгрыша случайного события) при определении направления поиска и величины шага изменения параметров. Метод эффективен для сложных систем с большим числом параметров.
Методы первого порядка используют, если возможно найти первую производную исследуемой функции. К данному классу относятся градиентные методы. Их суть заключается в определении лучшего направления и шага поиска минимума функции по значениям первых производных в некоторой точке x. В зависимости от способа задания этого шага и производится классификация градиентных методов: градиентный спуск; наискорейший спуск; градиентный спуск с постоянным шагом; градиентный спуск с переменным шагом. Методы эффективны для функций со слабовыраженной нелинейностью.
Методы второго порядка используют, если возможно найти вторую производную исследуемой функции. Их основой является метод Ньютона, предполагающий аппроксимацию исследуемой функции квадратичным полиномом в окрестностях некоторой точки х (точки начального приближения). Различные модификации метода Ньютона в основном отличаются друг от друга способами расчета вторых производных. Методы второго порядка сходятся быстрее градиентных, однако требуют вычислений вторых производных.
1.5.2 Синтез систем управления с помощью многокритериальной оптимизации
Методы многокритериальной оптимизации используются в задачах многоцелевого характера, когда предназначение системы может быть реализовано лишь при достижении нескольких целей.
Многокритериальные задачи могут решаться как в условиях определенности, так и в условиях риска и неопределенности. Подобные задачи возникают в процессе реорганизации общественных систем управления, проектирования и эксплуатации автоматизированных и автономных технических систем управления, управления отраслями промышленности, войсками.
... управления значительно повышается, если они сочетаются с имитационным моделированием с помощью компьютера и проигрыванием вариантов поведения объекта. II. ОБЩЕНАУЧНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ СИСТЕМ УПРАВЛЕНИЯ 1. Основные общенаучные методы исследования систем управления Современная наука имеет обширный и богатый арсенал методов исследования. Но успех исследования в значительной мере зависит от ...
... при температуре 40—45 °С. В процессе фильтрации кусочек соты несколько раз переворачивают для более полного стекания воды. Каждую пробу исследуют отдельно. 3. Органолептический метод исследования Органолептическое исследование — оценка качества продукции с помощью органов чувств: обоняния, вкуса, осязания, зрения. Это исследование позволяет произвести предварительную оценку данного продукта. ...
... эффективные методы окрашивания. Однако чтобы разобраться в молекулярных основах клеточной организации, необходим детальный биохимический анализ. К сожалению, биохимические методы предполагают использование значительного количества клеток и в процессе исследования клетки разрушаются. Если в качестве образца для биохимического анализа использовать кусочек ткани, то после разрушения будет получена ...
... приходит, с карты начинается и картой кончается». «Карта... способствует выявлению географических закономерностей». «Карта является как бы вторым языком географии...». По К.А. Салищеву, картографический метод исследования заключается в использовании разнообразных карт для описания, анализа и познания явлений, для получения новых знаний и характеристик, изучения процессов развития, установления ...
0 комментариев