Логико-математические игры в работе со старшими дошкольниками как средство формирования логического мышления

52868
знаков
0
таблиц
0
изображений
  Курсовая работа Тема: Логико-математические игры в работе со старшими дошкольниками как средство формирования логического мышления
Оглавление

Введение

Глава 1 Психолого-педагогические особенности детей старшего дошкольного возраста

1.1 Возрастные особенности детей старшего дошкольного возраста

1.2 Формирование и развитие логической сферы детей старшего дошкольного возраста

Глава 2 Развитие логического мышления у дошкольников средствами логико-математических игр

2.1 Обучение математике в старшей группе детского сада

2.2 Педагогические возможности игры в развитии логического мышления

2.3 Логико-математические игры как средство активизации обучения математике

Заключение

Список использованной литературы


Введение

Актуальность. Логическое мышление формируется на основе образного и является высшей стадией развития мышления. Достижение этой стадии - длительный и сложный процесс, так как полноценное развитие логического мышления требует не только высокой активности умственной деятельности, но и обобщенных знаний об общих и существенных признаках предметов и явлений действительности, которые закреплены в словах. Не следует ждать, когда ребенку исполнится 14 лет, и он достигнет стадии формально - логических операций, когда его мышление приобретает черты, характерные для мыслительной деятельности взрослых. Начинать развитие логического мышления следует в дошкольном детстве.

Но зачем логика маленькому ребенку, дошкольнику? Дело в том, что на каждом возрастном этапе создается как бы определенный «этаж», на котором формируются психические функции, важные для перехода следующему этапу. Таким образом, навыки, умения, приобретенные в дошкольный период, будут служить фундаментом для получения знаний и развития способностей в более старшем возрасте - в школе. И важнейшим среди этих навыков является навык логического мышления, способность «действовать в уме». Ребенку, не овладевшему приемами логического мышления, труднее будет даваться учеба - решение задач, выполнение упражнений потребуют больших затрат времени и сил. В результате может пострадать здоровье ребенка, ослабнет, а то и вовсе угаснет интерес к учению.

В целях развития логического мышления нужно предлагать старшему дошкольнику самостоятельно производить анализ, синтез, сравнение, классификацию, обобщение, строить индуктивные и дедуктивные умозаключения.

Овладев логическими операциями, старший дошкольник станет более внимательным, научится мыслить ясно и четко, сумеет в нужный момент сконцентрироваться на сути проблемы, убедить других в своей правоте. Учиться станет легче, а значит, и процесс учебы, и сама школьная жизнь будут приносить радость и удовлетворение.

Цель исследования – рассмотреть логико-математические игры в работе со старшими дошкольниками.

Задачи исследования:

1.   Конкретизировать представления о возрастных особенностях детей старшего дошкольного возраста.

2.   Изучить формирование и развитие логической сферы детей старшего дошкольного возраста.

3.   Рассмотреть логико-математические игры как средство активизации обучения математике.

Объект исследования - мышление детей старшего дошкольного возраста.

Предмет исследования - логико-математические игры как средство развития логического мышления дошкольников.

Теоретической основой данной работы послужили работы таких авторов, как: Сычева Г.Е., Носова Е.А., Непомнящая Р.Л. и других.

Методы исследования: анализ литературы.

Структура работы: работа состоит из введения, двух глав, заключения и списка использованной литературы.


Глава 1 Психолого-педагогические особенности детей старшего дошкольного возраста

 

1.1           Возрастные особенности детей старшего дошкольного возраста

 

В старшем дошкольном возрасте происходит интенсивное развитие интеллектуальной, нравственно-волевой и эмоциональной сфер личности. Развитие личности и деятельности характеризуется появлением новых качеств и потребностей: расширяются знания о предметах и явлениях, которые ребенок не наблюдал непосредственно. Детей интересуют связи, существующие между предметами и явлениями. Проникновение ребенка в эти связи во многом определяет его развитие. Переход в старшую группу связан с изменением психологической позиции детей: они впервые начинают ощущать себя самыми старшими среди других детей в детском саду. Воспитатель помогает дошкольникам понять это новое положение. Он поддерживает в детях ощущение «взрослости» и на его основе вызывает у них стремление к решению новых, более сложных задач познания, общения, деятельности.

Опираясь на характерную для старших дошкольников потребность в самоутверждении и признании их возможностей со стороны взрослых, воспитатель обеспечивает условия для развития детской самостоятельности, инициативы, творчества. Он постоянно создает ситуации, побуждающие детей активно применять свои знания и умения, ставит перед ними все более сложные задачи, развивает их волю, поддерживает желание преодолевать трудности, доводить начатое дело до конца, нацеливает на поиск новых, творческих решений. Важно предоставлять детям возможность самостоятельного решения поставленных задач, нацеливать их на поиск нескольких вариантов решения одной задачи, поддерживать детскую инициативу и творчество, показывать детям рост их достижений, вызывать у них чувство радости и гордости от успешных самостоятельных действий.

Развитию самостоятельности способствует освоение детьми умений поставить цель (или принять ее от воспитателя), обдумать путь к ее достижению, осуществить свой замысел, оценить полученный результат с позиции цели. Задача развития данных умений ставится воспитателем широко, создает основу для активного овладения детьми всеми видами деятельности.

Высшей формой самостоятельности детей является творчество. Задача воспитателя – пробудить интерес к творчеству. Этому способствует создание творческих ситуаций в игровой, театральной, художественно-изобразительной деятельности, в ручном труде, словесное творчество. Все это – обязательные элементы образа жизни старших дошкольников в детском саду. Именно в увлекательной творческой деятельности перед дошкольником возникает проблема самостоятельного определения замысла, способов и форм его воплощения. Воспитатель поддерживает творческие инициативы детей, создает в группе атмосферу коллективной творческой деятельности по интересам.

Серьезное внимание уделяет воспитатель развитию познавательной активности и интересов старших дошкольников. Этому должна способствовать вся атмосфера жизни детей. Обязательным элементом образа жизни старших дошкольников является участие в разрешении проблемных ситуаций, в проведении элементарных опытов (с водой, снегом, воздухом, магнитами, увеличительными стеклами и пр.), в развивающих играх, головоломках, в изготовлении игрушек-самоделок, простейших механизмов и моделей. Воспитатель своим примером побуждает детей к самостоятельному поиску ответов на возникающие вопросы: он обращает внимание на новые, необычные черты объекта, строит догадки, обращается к детям за помощью, нацеливает на экспериментирование, рассуждение, предположение .

Старшие дошкольники начинают проявлять интерес к будущему школьному обучению. Перспектива школьного обучения создает особый настрой в группе старших дошкольников. Интерес к школе развивается естественным путем в общении с воспитателем, через встречи с учителем, совместные дела со школьниками, посещение школы, сюжетно-ролевые игры на школьную тему. Главное – связать развивающийся интерес детей к новой социальной позиции («Хочу стать школьником») с ощущением роста своих достижений, с потребностью познания и освоения нового. Воспитатель стремится развить внимание и память детей, формирует элементарный самоконтроль, способность к саморегуляции своих действий. Этому помогают разнообразные игры, требующие от детей сравнения объектов по нескольким признакам, поиска ошибок, запоминания, применения общего правила, выполнения действий с условиями. Такие игры ежедневно проводятся с ребенком или с подгруппой старших дошкольников.

Организованное обучение осуществляется у старших дошкольников преимущественно в форме подгрупповых занятий и включает занятия познавательного цикла по математике, подготовке к освоению грамоты, по ознакомлению с окружающим миром, по развитию художественно-продуктивной деятельности и музыкально-ритмических способностей. В самостоятельной деятельности, в общении воспитателя с детьми создаются возможности для расширения, углубления и широкого вариативного применения детьми содержания, освоенного на занятиях.

Условием полноценного развития старших дошкольников является содержательное общение со сверстниками и взрослыми.

Воспитатель старается разнообразить практику общения с каждым ребенком. Вступая в общение и сотрудничество, он проявляет доверие, любовь и уважение к дошкольнику. При этом он использует несколько моделей взаимодействия: по типу прямой передачи опыта, когда воспитатель учит ребенка новым умениям, способам действия; по типу равного партнерства, когда воспитатель – равноправный участник детской деятельности, и по типу «опекаемый взрослый», когда педагог специально обращается к детям за помощью в разрешении проблем, когда дети исправляют ошибки, «допущенные» взрослым, дают советы и т.п.

Важным показателем самосознания детей 5–6 лет является оценочное отношение к себе и другим. Положительное представление о своем возможном будущем облике впервые позволяет ребенку критически отнестись к некоторым своим недостаткам и с помощью взрослого попытаться преодолеть их. Поведение дошкольника так или иначе соотносится с его представлениями о самом себе и о том, каким он должен или хотел бы быть. Положительное восприятие ребенком собственного Я непосредственным образом влияет на успешность деятельности, способность приобретать друзей, умение видеть их положительные качества в ситуациях взаимодействия. В процессе взаимодействия с внешним миром дошкольник, выступая активно действующим лицом, познает его, а вместе с тем познает и себя. Через самопознание ребенок приходит к определенному знанию о самом себе и окружающем его мире. Опыт самопознания создает предпосылки для становления у дошкольников способности к преодолению негативных отношений со сверстниками, конфликтных ситуаций. Знание своих возможностей и особенностей помогает прийти к пониманию ценности окружающих людей.

Развитие мышления характеризуется следующими положениями. Старший дошкольник уже может опираться на прошлый опыт – горы вдалеке не кажутся ему плоскими, чтобы понять, что большой камень - тяжелый, ему необязательно взять его в руки – его мозг накопил много сведений от различных каналов восприятия. Дети постепенно переходят от действий с самими предметами к действию их образами. В игре ребенку уже необязательно использовать предмет-заместитель, он может представить себе «игровой материал» - например, «поесть» из воображаемой тарелки воображаемой ложкой. В отличие от предыдущего этапа, когда для того, чтобы подумать, ребенку было необходимо взять предмет в руки и взаимодействовать с ним, сейчас достаточно представить его[4, с. 36].

В этот период ребенок активно оперирует образами – не только воображаемыми в игре, когда вместо кубика представляется машинка, а в пустой руке "оказывается" ложка, но и в творчестве. Очень важно именно в этом возрасте не приучать ребенка к использованию готовых схем, не насаждать собственные представления. В этом возрасте развитие фантазии и умения генерировать собственные, новые образы служат залогом развития интеллектуальных способностей – ведь мышление образное, чем лучше ребенок придумывает свои образы, тем лучше развивается мозг. Многие думают, что фантазия – это пустая трата времени. Однако от того, насколько полно развивается образное мышление, зависит его работа и на следующем, логическом, этапе. Поэтому не стоит волноваться, если ребенок в 5 лет не умеет считать и писать. Гораздо хуже, если он не умеет играть без игрушек (с песком, палочками, камушками и т.п.) и не любит заниматься творчеством! В творческой деятельности ребенок пытается изображать свои придуманные образы, ищет ассоциации с известными предметами. Очень опасно в этот период "обучать" ребенка заданным образам – например, рисование по образцу, раскрашивание, и т.п. Это мешает ему создавать собственные образы, то есть, мыслить.

1.2 Формирование и развитие логической сферы детей старшего дошкольного возраста

Формирование логических приемов является важным фактором, непосредственно способствующим развитию процесса мышления старшего дошкольника. Практически все психологические исследования, посвященные анализу способов и условий развития мышления ребенка, единодушны в том, что методическое руководство этим процессом не только возможно, но и является высокоэффективным, т. е. при организации специальной работы по формированию и развитию логических приемов мышления наблюдается значительное повышение результативности этого процесса независимо от исходного уровня развития ребенка [6, с. 13].

Рассмотрим возможности активного включения в процесс математического развития ребенка старшего дошкольного возраста различных приемов умственных действий на математическом материале.

Сериация - построение упорядоченных возрастающих или убывающих рядов. Классический пример сериации: матрешки, пирамидки, вкладные мисочки и т. д.

Сериации можно организовать по размеру: по длине, по высоте, по ширине - если предметы одного типа (куклы, палочки, ленты, камешки и т. д.) и просто «по величине» (с указанием того, что считать «величиной») - если предметы разного типа (рассадить игрушки по росту). Сериации могут быть организованы по цвету: по степени интенсивности окраски.

Анализ - выделение свойств объекта, выделение объекта из группы или выделение группы объектов по определенному признаку.

Например, задан признак: кислый. Сначала у каждого объекта множества проверяется наличие или отсутствие этого признака, а затем они выделяются и объединяются в группу по признаку «кислые».

Синтез - соединение различных элементов (признаков, свойств) в единое целое. В психологии анализ и синтез рассматриваются как взаимодополняющие друг друга процессы (анализ осуществляется через синтез, а синтез - через анализ).

Задания на формирование умения выделить элементы того или иного объекта (признаки), а также на соединение их в единое целое можно предлагать с первых же шагов математического развития ребенка.

Например:

A. Задание на выбор предмета из группы по любому признаку (2-4 года):

Возьми красный мячик. Возьми красный, но не мячик. Возьми мячик, но не красный.

Б. Задание на выбор нескольких предметов по указанному признаку (2-4 года): Выбери все мячики. Выбери круглые, но не мячики.

B. Задание на выбор одного или нескольких предметов по нескольким указанным признакам (2-4 года):

Выбери маленький синий мячик. Выбери большой красный мячик [4, с. 35].

Задание последнего вида предполагает соединение двух признаков предмета в единое целое.

Для развития продуктивной аналитико-синтетической мыслительной деятельности у ребенка старшего дошкольного возраста в методике рекомендуют задания, в которых ребенку необходимо рассматривать один и тот же объект с разных точек зрения. Способом организации такого всестороннего (или по крайней мере многоаспектного) рассмотрения является прием постановки различных заданий к одному и тому же математическому объекту.

Сравнение - логический прием, требующий выявления сходства и различия между признаками объекта (предмета, явления, группы предметов).

Сравнение требует умения выделять одни признаки объекта и абстрагироваться от других. Для выделения различных признаков объекта можно использовать игру «Найди это»:

·   Какие из этих предметов большие желтые? (Мяч и медведь.)

·   Что большое желтое круглое? {Мяч.) и т. д.

Старший дошкольник должен использовать роль ведущего так же часто, как и отвечающего, это подготовит его к следующему этапу - умению отвечать на вопрос:

·   Что ты можешь рассказать об этом предмете? (Арбуз большой, круглый, зеленый. Солнце круглое, желтое, горячее.)

Вариант. Кто больше расскажет об этом? (Лента длинная, синяя, блестящая, шелковая.)

Вариант. «Что это: белое, холодное, рассыпчатое?» и т. д.

Методически рекомендуется сначала учить старшего дошкольника сравнивать два объекта, затем группы объектов. Дошкольнику легче сначала найти признаки различия объектов, затем - признаки их сходства.

Задания на разделение объектов на группы по какому-то признаку (большие и маленькие, красные и синие и т. п.) требуют сравнения.

Все игры вида «Найди такой же» направлены на формирование умения сравнивать. Для детей старшего дошкольного возраста количество и характер признаков сходства могут широко варьироваться [5, с. 41].

Классификация - разделение множества на группы по какому-либо признаку, который называют основанием классификации. Основание для классификации может быть задано, но может и не указываться (этот вариант чаще используется со старшими детьми, так как требует умения анализировать, сравнивать и обобщать). Следует учитывать, что при классификационном разделении множества полученные подмножества не должны попарно пересекаться и объединение всех подмножеств должно составлять данное множество. Иными словами, каждый объект должен входить в одно и только в одно подмножество.

Классификацию с детьми старшего дошкольного возраста можно проводить:

·   по наименованию предметов (чашки и тарелки, ракушки и камешки, кегли и мячики и т. д.);

·   по размеру (в одну группу большие мячи, в другую - маленькие мячики; в одну коробку длинные карандаши, в другую - короткие и т. д.);

·   по цвету (в эту коробку красные пуговицы, в эту - зеленые);

·   по форме (в эту коробку квадраты, а в эту - кружки; в эту коробку - кубики, в эту - кирпичики и т. д.);

·   по другим признакам (съедобное и несъедобное, плавающие и летающие животные, лесные и огородные растения, дикие и домашние звери и т. д.) [4, с.48].

Все перечисленные выше примеры - это классификации по заданному основанию: педагог сам сообщает его детям. В другом случае старшие дошкольники определяют основание самостоятельно. Педагог задает только количество групп, на которые следует разделить множество предметов (объектов). При этом основание может быть определено не единственным образом.

При подборе материала для задания педагог должен следить за тем, чтобы не получился набор, ориентирующий детей на несущественные признаки объектов, что будет подталкивать к неверным обобщениям. Следует помнить, что при эмпирических обобщениях дети опираются на внешние, видимые признаки объектов, что не всегда помогает правильно раскрыть их сущность и определить понятие.

Формирование у старших дошкольников способности самостоятельно делать обобщения является крайне важным с общеразвивающей точки зрения. В связи с изменениями в содержании и методике обучения математике в начальной школе, которые ставят своей целью развивать у учащихся способности к эмпирическому, а в перспективе и теоретическому обобщению, важно уже в детском саду обучать детей различным приемам моделирующей деятельности с помощью вещественной, схематической и символической наглядности (В.В. Давыдов), учить ребенка сравнивать, классифицировать, анализировать и обобщать результаты своей деятельности.


Глава 2 Развитие логического мышления у дошкольников средствами логико-математических игр   2.1 Обучение математике в старшей группе детского сада

 

"Программой воспитания в детском саду" в старшей группе предусматривается значительное расширение, углубление и обобщение у детей элементарных математических представлений, дальнейшее развитие деятельности счета. Дети учатся считать до 10, не только зрительно воспринимаемые предметы, но и звуки, предметы, воспринимаемые на ощупь, движения. Уточняется представление ребят о том, что число предметов не зависит от их размеров, пространственного расположения и от направления счета. Кроме того, они убеждаются в том, что множества, содержащие одинаковое число элементов, соответствуют одному-единственному натуральному числу (5 белочек, 5 елочек, 5 концов у звездочки и пр.) [2, с. 26].

На примерах составления множеств из разных предметов они знакомятся с количественным составом из единиц чисел до 5. Сравнивая смежные числа в пределах 10 с опорой на наглядный материал, дети усваивают, какое из двух смежных чисел больше, какое меньше, получают элементарное представление о числовой последовательности - о натуральном ряде.

В старшей группе начинают формировать понятие о том, что некоторые предметы можно разделить на несколько равных частей. Дети делят на 2 и 4 части модели геометрических фигур (квадрат, прямоугольник, треугольник) , а также другие предметы, сравнивают целое и части.

Большое внимание уделяют формированию пространственных и временных представлений. Так, дети учатся видеть изменение предметов по размерам, оценивать размеры предметов с точки зрения 3 измерений: длины, ширины, высоты; углубляются их представления о свойствах величин.

Детей учат различать близкие по форме геометрические фигуры: круг и фигуру овальной формы, последовательно анализировать и описывать форму предметов.

У детей закрепляют умение определять словом положение того или иного предмета по отношению к себе ("слева от меня окно, впереди меня шкаф"), по отношению к другому предмету ("справа от куклы сидит заяц, слева от куклы стоит лошадка").

Развивают умение ориентироваться в пространстве: изменять направление движения во время ходьбы, бега, гимнастических упражнений. Учат определять положение ребенка среди окружающих предметов (например, "я стою за стулом", "около стула" и т. п.). Дети запоминают названия и последовательность дней недели.

Наглядные, словесные и практические методы и приемы обучения на занятиях по математике в старшей группе в основном используются в комплексе. Пятилетние дети способны понять познавательную задачу, поставленную педагогом, и действовать в соответствии с его указанием. Постановка задачи позволяет возбудить их познавательную активность. Создаются такие ситуации, когда имеющихся знаний оказывается недостаточно для того, чтобы найти ответ на поставленный вопрос, и возникает потребность узнать что-то новое, научиться новому. Например, педагог спрашивает: "Как узнать, на сколько длина стола больше его ширины?" Известный детям прием приложения применить нельзя. Педагог показывает им новый способ сравнения длин с помощью мерки [11, с. 127].

Побудительным мотивом к поиску являются предложения решить какую-либо игровую или практическую задачу (подобрать пару, изготовить прямоугольник, равный данному, выяснить, каких предметов больше, и др.).

Организуя самостоятельную работу детей с раздаточным материалом, педагог также ставит перед ними задачи (проверить, научиться, узнать новое и т. п.).

Закрепление и уточнение знаний, способов действий в ряде случаев осуществляется предложением детям задач, в содержании которых отражаются близкие, понятные им ситуации. Так, они выясняют, какой длины шнурки у ботинок и полуботинок, подбирают ремешок к часам и пр. Заинтересованность детей в решении таких задач обеспечивает активную работу мысли, прочное усвоение знаний. Математические представления "равно", "не равно", "больше - меньше", "целое и часть" и др. формируются на основе сравнения. Дети 5 лет уже могут под руководством педагога последовательно рассматривать предметы, выделять и сопоставлять их однородные признаки. На основе сравнения они выявляют существенные отношения, например отношения равенства и неравенства, последовательности, целого и части и др., делают простейшие умозаключения.

Развитию операций умственной деятельности (анализ, синтез, сравнение, обобщение) в старшей группе уделяют большое внимание. Все эти операции дети выполняют с опорой на наглядность.

Если в младших группах при первичном выделении того или иного свойства сравнивались предметы, отличающиеся лишь одним данным свойством (полоски отличались только длиной, при уяснении понятий "длиннее - короче"), то теперь предъявляются предметы, имеющие уже 2-3 признака различия (например, берут полоски не только разной длины и ширины, но и разных цветов и пр.).

Детей сначала учат производить сравнение предметов попарно, а затем сопоставлять сразу несколько предметов. Одни и те же предметы они располагают в ряд или группируют то по одному, то по другому признаку. Наконец, они осуществляют сравнение в конфликтной ситуации, когда существенные признаки для решения данной задачи маскируются другими, внешне более ярко выраженными. Например, выясняется, каких предметов больше (меньше) при условии, что меньшее количество предметов занимает большую площадь. Сравнение производится на основе непосредственных и опосредованных способов сопоставления и противопоставления (наложения, приложения, счета, "моделирования измерения"). В результате этих действий дети уравнивают количества объектов или нарушают их равенство, т. е. выполняют элементарные действия математического характера.

Выделение и усвоение математических свойств, связей, отношений достигается выполнением разнообразных действий. Большое значение в обучении детей 5 лет по-прежнему имеет активное включение в работу разных анализаторов.

Рассматривание, анализ и сравнение объектов при решении задач одного типа производятся в определенной последовательности. Например, детей учат последовательному анализу и описанию узора, составленного из моделей геометрических фигур, и др. Постепенно они овладевают общим способом решения задач данной категории и сознательно им пользуются. Так как осознание содержания задачи и способов ее решения детьми этого возраста осуществляется в ходе практических действий, ошибки, допускаемые детьми, всегда исправляются через действия с дидактическим материалом [3, с. 25].

В старшей группе расширяют виды наглядных пособий и несколько изменяют их характер. В качестве иллюстративного материала продолжают использовать игрушки, вещи. Но теперь большое место занимает работа с картинками, цветными и силуэтными изображениями предметов, причем рисунки предметов могут быть схематичными. С середины учебного года вводятся простейшие схемы, например "числовые фигуры", "числовая лесенка", "схема пути" (картинки, на которых в определенной последовательности размещены изображения предметов).

Наглядной опорой начинают служить "заместители" реальных предметов. Отсутствующие в данный момент предметы педагог представляет моделями геометрических фигур. Например, дети угадывают, кого в трамвае было больше: мальчиков или девочек, если мальчики обозначены большими треугольниками, а девочки - маленькими. Опыт показывает, что дети легко принимают такую абстрактную наглядность. Наглядность активизирует детей и служит опорой произвольной памяти, поэтому в отдельных случаях моделируются явления, не имеющие наглядной формы. Например, дни недели условно обозначают разноцветными фишками. Это помогает детям установить порядковые отношения между днями недели и запомнить их последовательность.

В работе с детьми 5-6 лет повышается роль словесных приемов обучения. Указания и пояснения педагога направляют и планируют деятельность детей. Давая инструкцию, он учитывает, что дети знают и умеют делать, и показывает только новые приемы работы. Вопросы педагога в ходе объяснения стимулируют проявление детьми самостоятельности и сообразительности, побуждая их искать разные способы решения одной и той же задачи: "Как еще можно сделать? Проверить? Сказать?" [3, с. 37]

Детей учат находить разные формулировки для характеристики одних и тех же математических связей и отношений. Существенное значение имеет отработка в речи новых способов действия. Поэтому в ходе работы с раздаточным материалом педагог спрашивает то одного, то другого ребенка, что, как и почему он делает; один ребенок может выполнять в это время задание у доски и пояснять свои действия. Сопровождение действия речью позволяет детям его осмыслить. После выполнения любого задания следует опрос. Дети отчитываются, что и как они делали и что получилось в результате.

По мере накопления умения выполнять те или иные действия ребенку можно предложить сначала высказать предположение, что и как надо сделать (построить ряд предметов, сгруппировать их и пр.), а потом выполнить практическое действие. Так учат детей планировать способы и порядок выполнения задания. Усвоение правильных оборотов речи обеспечивается многократным их повторением в связи с выполнением разных вариантов заданий одного типа.

В старшей группе начинают использовать словесные игры и игровые упражнения, в основе которых лежат действия по представлению: "Скажи наоборот!", "Кто быстрее назовет?", "Что длиннее (короче)?" и др.

Усложнение и вариантность приемов работы, смена пособий и ситуаций стимулируют проявление детьми самостоятельности, активизируют их мышление. Для поддержания интереса к занятиям педагог постоянно вносит в них элементы игры (поиск, угадывание) и соревнования: "Кто быстрее найдет (принесет, назовет)?" и т. д.

  2.2 Педагогические возможности игры в развитии логического мышления

Теоретические и экспериментальные работы А.С. Выготского, Ф.Н. Леонтьева, С.Л. Рубенштейна свидетельствуют о том, что ни одно из специфических качеств - логического мышления, творческое воображение, осмысленная память - не может развиваться у ребёнка независимо от воспитания, в результате спонтанного созревания врожденных задатков. Они формируются на протяжении детства, в процессе воспитания, которое играет, как писал Л.С. Выготский “ведущую роль в психическом развитии ребенка”.

Необходимо развивать мышление ребенка, нужно научить его сравнивать, обобщать, анализировать, развивать речь, научить ребенка писать. Так как механическое запоминание разнообразной информации, копирование взрослых рассуждений ничего не дает для развития мышления детей.

В.А. Сухомлинский писал: “…Не обрушивайте на ребёнка лавину знаний…- под лавиной знаний могут быть погребены пытливость и любознательность. Умейте открыть перед ребёнком в окружающем мире что-то одно, но открыть так, чтобы кусочек жизни заиграл перед детьми всеми цветами радуги. Открывайте всегда что-то недосказанное, чтобы ребёнку хотелось ещё и ещё раз возвратиться к тому, что он узнал”.

Поэтому обучение и развитие ребёнка должны быть непринужденными, осуществляться через свойственные конкретному возрасту виды деятельности и педагогические средства. Таким развивающим средством для старших дошкольников выступает игра.

Несмотря на то, что игра постепенно перестаёт выступать в качестве ведущего вида деятельности в старшем дошкольном возрасте, но она не теряет развивающих функций.

Я.А. Коменский рассматривает игру как необходимую для ребёнка форму деятельности.

А.С.Макаренко обращал внимание родителей на то, что “воспитание будущего деятеля должно заключаться не в устранении игры, а в такой организации её, когда игра остаётся игрой, но в игре воспитываются качества будущего ребёнка, гражданина” [2, 17].

В основном виде игры сюжетно-ролевой, творческой отражаются впечатления детей об окружающем их знания, понимании происходящих событий и явлений. В огромном количестве игр с правилами запечатлены разнообразные знания, умственные операции,

Действия, которые дети должны освоить. Освоение это идёт по мере общего умственного развития, вместе с тем в игре это развитие и осуществляется.

Умственное развитие детей происходит как в процессе творческих игр (развиваются умения обобщать функции мышления), так и дидактической игре. Само название дидактические говорят о том, что эти игры имеют свою цель умственного развития детей и, следовательно, могут рассматриваться как прямое средство умственного воспитания.

Соединение в дидактической игре обучающей задачи с игровой формой, наличие готового содержания и правил даёт возможность педагогу более планомерно использовать дидактические игры для умственного воспитания детей.

Очень важно, что игра - это не только способ и средство обучения, это ещё и радость, и удовольствие для ребёнка. Все дети любят играть, и от взрослого зависит, на сколько эти игры будут содержательными и полезными.

Играя, ребёнок может не только закрепить ранее полученные знания, но и приобретать новые навыки, умения, развивать умственные способности. В этих целях используются специальные на умственное развитие ребёнка игры, насыщенные логическим содержанием. А.С.Макаренко прекрасно понимал, что одна игра, даже лучшая, не может обеспечить успеха в достижении воспитательных целей. Поэтому он стремился создать комплекс игр, считая эту задачу важнейшей в деле воспитания.

В современной педагогике дидактическая игра рассматривается, как эффективное средство развития ребёнка, развитие таких интеллектуальных психических процессов как внимание, память, мышление, воображение.

С помощью дидактической игры детей приучают самостоятельно мыслить, использовать полученные знания в различных условиях в соответствии с поставленной задачей. Многие игры ставят перед детьми задачу рационального использования имеющихся знаний в мыслительных операциях:

·   находить характерные признаки в предметах и явлениях окружающего мира;

·   сравнивать, группировать, классифицировать предметы по определенным признакам, делать правильные выводы.

Активность детского мышления является главной предпосылкой сознательного отношения к приобретению твердых, глубоких знаний, установления различных отношений в коллективе [9, с. 36].

Дидактические игры развивают сенсорные способности детей. Процессы ощущения и восприятия лежат в основе познания ребёнком окружающей среды. Также развивает речь детей: наполняется и активизируется словарь, формируется правильное звукопроизношение, развивается связная речь, умение правильно выражать свои мысли.

Некоторые игры требуют от детей активного использования видовых, родовых понятий, упражняют в нахождении синонимов, слов, сходных по значению и т.д.

В процессе игры, развитие мышления и речи решается в непрерывной связи; при общении детей в игре речь активизируется, развивается способность аргументировать свои утверждения, доводы.

Итак, выяснили, что развивающие способности игры велики. Посредством игры можно развивать и совершенствовать все стороны личности ребёнка. Нас интересуют игры, развивающие интеллектуальную сторону игры, которые способствуют развитию мышления младших школьников.

Математическими играми считаются игры, в которых смоделированы математические построения, отношения, закономерности. Для нахождения ответа (решения), как правило, необходим предварительный анализ условий, правил, содержание игры или задачи. По ходу решения требуется применение математических методов и умозаключений [5, с. 31].

Разновидностью математических игр и задач являются логические игры, задачи, упражнения. Они направлены на тренировку мышления при выполнении логических операций и действий. С целью развития мышления детей используют различные виды несложных задач и упражнений. Это задачи на нахождение пропущенной фигуры, продолжение ряда фигур, на поиск чисел, недостающих в ряду фигур (нахождение закономерностей, лежащих в основе выбора этой фигуры и т. д.)

Следовательно, логико-математические игры это игры, в которых смоделированы математические отношения, закономерности, предполагающие выполнение логических операций и действий.

Л.А.Столяров выделяет следующую структуру обучающей игры, которая включает основные элементы, характерные для подлинной дидактической игры: дидактическую задачу, игровые действия, правила, результат.

Дидактические задачи:

·   всегда разрабатываются взрослыми;

·   они направлены на формирование принципиально новых знаний и развитие логических структур мышления;

·   усложняются на каждом новом этапе;

·   тесно связаны с игровыми действиями и правилами;

·   представляются через игровую задачу и осознаются детьми.

Правила строго зафиксированы, определяют способ, порядок, последовательность действий по правилу.

Игровые действия позволяют реализовать дидактическую задачу через игровую.

Результаты игры завершение игрового действия или выигрыш.

В логико-математических играх и упражнениях используются специальный структурированный материал, позволяющий наглядно представить абстрактные понятия и отношения между ними.

Специально структурированный материал:

·   геометрические формы (обручи, геометрические блоки);

·   схемы;

·   схемы-правила (цепочки фигур);

·   схемы функции (вычислительные машины);

·   схемы операции (шахматная доска).

Итак, педагогические возможности дидактической игры очень велики. Игра развивает все стороны личности ребёнка, активизирует скрытые интеллектуальные возможности детей.

 
2.3 Логико-математические игры как средство активизации обучения математике

Интерес к математике у старших дошкольников поддерживается занимательностью самих задач, вопросов, заданий. Говоря о занимательности, мы имеем в виду не развлечение детей пустыми забавами, а занимательность содержания математических заданий. Педагогически оправданная занимательность имеет целью привлечь внимание детей, усилить его, активизировать их мыслительную деятельность. Занимательность в этом смысле всегда несет элементы остроумия, игрового настроя, праздничности. Занимательность служит основой для проникновения в сознание ребят чувства прекрасного в самой математике. Занимательность характеризуется наличием легкого и умного юмора в содержании математических заданий, в их оформлении, в неожиданной развязке при выполнении этих заданий. Юмор должен быть доступен пониманию детей. Поэтому воспитатели добиваются от самих детей доходчивого разъяснения сущности легких задач-шуток, веселых положений, в которых иногда оказываются ученики во время игр, т.е. добиваются понимания сущности самого юмора и его безобидности. Чувство юмора обычно проявляется тогда, когда находят отдельные веселые черточки в различных ситуациях. Чувство юмора, если им обладает человек, смягчает восприятие отдельных неудач в сложившейся обстановке. Легкий юмор должен быть добрым, создавать бодрое, приподнятое настроение.

Атмосфера легкого юмора создается путем включения в занятия задач-рассказов, заданий героев веселых детских сказок, включения задач-шуток, путем создания игровых ситуаций и веселых соревнований.

а) Дидактическая игра как средство обучения математики.

На уроках математики большое место занимают игры. Это главным образом дидактические игры, т.е. игры, содержание которых способствует либо развитию отдельных мыслительных операций, либо освоению вычислительных приемов, навыков в беглости счета. Целенаправленное включение игры повышает интерес детей к занятиям, усиливает эффект самого обучения. Создание игровой ситуации приводит к тому, что дети, увлеченные игрой, незаметно для себя и без особого труда и напряжения приобретают определенные знания, умения и навыки. В старшем дошкольном возрасте у детей сильна потребность в игре, поэтому воспитатели детского сада включают ее в уроки математики. Игра делает уроки эмоционально насыщенными, вносит бодрый настрой в детский коллектив, помогает эстетически воспринимать ситуацию, связанную с математикой.

Дидактическая игра является ценным средством воспитания умственной активности детей, она активизирует психические процессы, вызывает у учащихся живой интерес к процессу познания. В ней дети охотно преодолевают значительные трудности, тренируют свои силы, развивают способности и умения. Она помогает сделать любой учебный материал увлекательным, вызывает у детей глубокое удовлетворение, создает радостное рабочее настроение, облегчает процесс усвоения знаний.

В дидактических играх ребенок наблюдает, сравнивает, сопоставляет, классифицирует предметы по тем или иным признакам, производит доступные ему анализ и синтез, делает обобщения [8, с. 75].

Дидактические игры предоставляют возможность развивать у детей произвольность таких психических процессов, как внимание и память. Игровые задания развивают у детей смекалку, находчивость, сообразительность. Многие из них требуют умения построить высказывание, суждение, умозаключение; требуют не только умственных, но и волевых усилий – организованности, выдержки, умения соблюдать правила игры, подчинять свои интересы интересам коллектива.

Однако не всякая игра имеет существенное образовательное и воспитательное значение, а лишь та, которая приобретает характер познавательной деятельности. Дидактическая игра обучающего характера сближает новую, познавательную деятельность ребенка с уже привычной для него, облегчая переход от игры к серьезной умственной работе.

Дидактические игры особенно необходимы в обучении и воспитании детей шестилетнего возраста. В них удается сконцентрировать внимание даже самых инертных детей. Вначале дети проявляют интерес только к игре, а затем и к тому учебному материалу, без которого игра невозможна. Чтобы сохранить саму природу игры и в то же время успешно осуществлять обучение ребят математике, необходимы игры особого рода. Они должны быть организованы так, чтобы в них: во-первых, в качестве способа выполнения игровых действий возникала объективная необходимость в практическом применении счета; во-вторых, содержание игры и практические действия были бы интересными и предоставляли возможность для проявления самостоятельности и инициативы детей.

б) Логические упражнения на занятиях математики.

Логические упражнения представляют собой одно из средств, с помощью которого происходит формирование у детей правильного мышления. Когда говорят о логическом мышлении, то имеют в виду мышление, по содержанию находящееся в полном соответствии с объективной реальностью.

Логические упражнения позволяют на доступном детям математическом материале, в опоре на жизненный опыт строить правильные суждения без предварительного теоретического освоения самих законов и правил логики.

В процессе логических упражнений дети практически учатся сравнивать математические объекты, выполнять простейшие виды анализа и синтеза, устанавливать связи между родовыми и видовыми понятиями.

Чаще всего предлагаемые детям логические упражнения не требуют вычислений, а лишь заставляют детей выполнять правильные суждения и приводить несложные доказательства. Сами же упражнения носят занимательный характер, поэтому они содействуют возникновению интереса у детей к процессу мыслительной деятельности. А это одна из кардинальных задач учебно-воспитательного процесса старших дошкольников.

Вследствие того, что логические упражнения представляют собой упражнения в мыслительной деятельности, а мышление старших дошкольников в основном конкретное, образное, то на уроках я применяю наглядность. В зависимости от особенностей упражнений в качестве наглядности применяют рисунки, чертежи, краткие условия задач, записи терминов-понятий.

Народные загадки всегда служили и служат увлекательным материалом для размышления. В загадках обычно указываются определенные признаки предмета, по которым отгадывают и сам предмет. Загадки – это своеобразные логические задачи на выявление предмета по некоторым его признакам. Признаки могут быть разными. Они характеризуют как качественную, так и количественную сторону предмета. Для уроков математики подбираются такие загадки, в которых главным образом по количественным признакам наряду с другими находится сам предмет. Выделение количественной стороны предмета (абстрагирование), а также нахождение предмета по количественным признакам – полезные и интересные логико-математические упражнения.

в) Роль сюжетно-ролевой игры в процессе обучения математики.

Среди математических игр для детей имеются и сюжетно-ролевые. Сюжетно-ролевые игры можно обозначить как творческие. Их основное отличие от других игр заключается в самостоятельности создания сюжета и правил игры и их выполнение. Наиболее притягательную силу для старших дошкольников имеют те роли, которые дают им возможность проявлять высокие моральные качества личности: честность, смелость, товарищество, находчивость, остроумие, смекалку. Поэтому такие игры содействуют не только выработке отдельных математических навыков, но и остроты и логичности мысли. В частности, игра содействует воспитанию дисциплинированности, т.к. любая игра проводится по соответствующим правилам. Включаясь в игру, ребенок выполняет определенные правила; при этом он подчиняется самим правилам не по принуждению, а совершенно добровольно, иначе не будет игры. А выполнение правил бывает связано с преодолением трудностей, с проявлением настойчивости [8, с. 59].

Однако, несмотря на всю важность и значение игры в процессе урока, она не самоцель, а средство для развития интереса к математике. Математическая сторона содержания игры всегда должна отчетливо выдвигаться на передний план. Только тогда она будет выполнять свою роль в математическом развитии детей и воспитании интереса их к математике.

В дидактике имеются разнообразные развивающие материалы. Наиболее эффективным пособием являются логические блоки, разработанные венгерским психологом и математиком Дьенешем, для развития раннего логического мышления и для подготовки детей к усвоению математики. Блоки Дьенеша представляют собой набор геометрических фигур, который состоит из 48 объёмных фигур, различающихся по форме (круги, квадраты, прямоугольники, треугольники), по цвету (жёлтые, синие, красные), размеру(большие и маленькие) по толщине(толстые и тонкие).То есть, каждая фигура характеризуется четырьмя свойствами: цветом, формой, размером, толщиной. В наборе даже нет двух фигур, одинаковых по всем свойствам. В своей практике воспитатели детских садов используют в основном плоские геометрические фигуры. Весь комплекс игр и упражнений с блоками Дьенеша – это длинная интеллектуальная лестница, а сами игры и упражнения – её ступеньки. На каждую из этих ступенек ребёнок должен встать. Логические блоки помогают ребёнку овладеть мыслительными операциями и действиями, к ним относятся: выявление свойств, их сравнение, классификация, обобщение, кодирование и декодирование, а так же логические операции [4, с. 31].

Кроме того, блоки могут закладывать в сознание детей начало алгоритмической культуры мышления, развивать у детей способность действовать в уме, осваивать представления о числах и геометрических фигурах, пространственную ориентацию.

В процессе разнообразных действий с блоками дети сначала осваивают умение выявлять и абстрагировать в предметах одно свойство (цвет, форму, размер, толщину), сравнивать, классифицировать и обобщать предметы по одному из этих свойств. Затем они овладевают умениями анализировать, сравнивать, классифицировать и обобщать предметы сразу по двум свойствам (цвету и форме, форме и размеру, размеру и толщине ит.д.), несколько позже по трём (цвету, форме, размеру; форме, размеру, толщине и т.д.)и по четырём свойствам(цвету, форме, размеру, толщине), при этом развивая логическое мышление детей.

В одном и том же упражнении можно варьировать правилами выполнения задания с учётом возможностей детей. Например, несколько детей строят дорожки. Но одному ребёнку предлагается построить дорожку так, чтобы рядом не было блоков одинаковой формы (оперирование одним свойством), другому - чтобы рядом не было одинаковых по форме и по цвету (оперирование сразу двумя свойствами). В зависимости от уровня развития детей можно использовать не весь комплекс, а какую-то его часть, сначала блоки разные по форме и по цвету, но одинаковые по размеру и толщине, затем разные по форме, цвету и размеру, но одинаковые по толщине и в конце полный комплекс фигур.

Это очень важно: чем разнообразней материал, тем сложнее абстрагировать одни свойства от других, а значит, и сравнивать, и классифицировать, и обобщать.

С логическими блоками ребёнок выполняет различные действия: выкладывает, меняет местами, убирает, прячет, ищет, делит, а по ходу действия рассуждает.

Итак, играя с блоками, ребёнок приближается к пониманию сложных логических отношений между множествами. От игры с абстрактными блоками дети легко переходят к играм с реальными множествами, с конкретным материалом.


Заключение

Математическое развитие детей старшего дошкольного возраста в конкретном образовательном учреждении (детский сад, группы развития, группы дополнительного образования, прогимназия и т. д.) проектируется на основе концепции дошкольного учреждения, целей и задач развития детей, данных диагностики, прогнозируемых результатов. Концепцией определяется соотношение предматематического и предлогического компонентов в содержании образования. От этого соотношения зависят прогнозируемые результаты: развитие интеллектуальных способностей детей старшего дошкольного возраста, их логического, творческого или критического мышления; формирование представлений о числах, вычислительных или комбинаторных навыках, способах преобразования объектов и т. д.

Ориентировка в современных программах развития и воспитания детей в детском саду, изучение их дает основание для выбора методики. В современные программы («Развитие», «Радуга», «Детство», «Истоки» и др.), как правило, включается то логико-математическое содержание, освоение которого способствует развитию познавательно-творческих и интеллектуальных способностей детей.

Эти программы реализуются через деятельностные личностно-ориентированные развивающие технологии и исключают «дискретное» обучение, т. е. раздельное формирование знаний и умений с последующим закреплением.

Формирование у детей старшего дошкольного возраста общих понятий имеет важное значение для дальнейшего развития мышления в школьном возрасте.

У детей дошкольного возраста происходит интенсивное развитие мышления. Ребёнок приобретает ряд новых знаний об окружающей действительности и вместе с тем научается анализировать, синтезировать, сравнивать, обобщать свои наблюдения, т. е. производить простейшие умственные операции. Важнейшую роль в умственном развитии ребёнка играет воспитание и обучение.

Воспитатель знакомит ребёнка с окружающей действитель ностью, сообщает ему ряд элементарных знаний об явлениях природы и общественной жизни, без чего развитие мышления было бы невозможно. Однако следует указать, что простое запоминание отдельных фактов, пассивное усвоение сообщаемых знаний ещё не могут обеспечить правильное развитие детского мышления.

Для того чтобы ребёнок начал мыслить, перед ним необходимо поставить новую задачу, в процессе решения которой он мог бы использовать приобретённые ранее знания применительно к новым обстоятельствам.

Большое значение в умственном воспитании ребёнка приобретает поэтому организация игр и занятий, которые развивали бы у ребёнка умственные интересы, ставили бы перед ним определённые познавательные задачи, заставляли бы самостоятельно производить определённые умственные операции для достижения нужного результата. Этому служат вопросы, задаваемые воспитателем во время занятий, прогулок и экскурсий, дидактические игры, носящие познавательный характер, всякого рода загадки и головоломки, специально предназначенные для стимуляции умственной активности ребёнка.

Логические приемы как средство формирования логического мышления дошкольников – это сравнение, синтез, анализ, классификация, доказательство и другие - применяются во всех видах деятельности. Их используют начиная с первого класса для решения задач, выработки правильных умозаключений. Сейчас, в условиях коренного изменения характера человеческого труда, ценность такого знания возрастает. Свидетельство тому - растущее значение компьютерной грамотности, одной из теоретических основ которой является логика. Знание логики способствует культурному и интеллектуальному развитию личности.

Отбирая методы и приёмы, воспитатель должен помнить, что в основе образовательного процесса лежит проблемно-игровая технология. Поэтому преимущество отдаётся игре, как основному методу обучения дошкольников, математическим развлечениям, дидактическим, развивающим, логико-математическим играм; игровым упражнениям; экспериментированию; решению творческих и проблемных задач, а также практической деятельности.


Список использованной литературы

 

1.    Беженова М. Математическая азбука. Формирование элементарных математических представлений. – М.: Эксмо, СКИФ, 2005.

2.    Белошистая А.В. Готовимся к математике. Методические рекомендации для организации занятий с детьми 5-6 лет. – М.: Ювента, 2006.

3.    Волчкова В.Н., Степанова Н.В. Конспекты занятий в старшей группе детского сада. Математика. Практическое пособие для воспитателей и методистов ДОУ. – М.: ТЦ "Учитель", 2007.

4.    Денисова Д., Дорожин Ю. Математика для дошкольников. Старшая группа 5+. – М.: Мозаика-Синтез, 2007.

5.    Занимательная математика. Материалы для занятий и уроков с дошкольниками и младшими школьниками. – М.: Учитель, 2007.

6.    Звонкин А.К. Малыши и математика. Домашний кружок для дошкольников. – М.: МЦНМО, МИОО, 2006.

7.    Кузнецова В.Г. Математика для дошкольников. Популярная методика игровых уроков. – СПб.: Оникс, Оникс-СПб, 2006.

8.    Носова Е.А., Непомнящая Р.Л. Логика и математика для дошкольников. – М.: Детство-Пресс, 2007.

9.    Петерсон Л.Г., Кочемасова Е.Е. Игралочка. Практический курс математики для дошкольников. Методические рекомендации. – М.: Ювента, 2006.

10.  Сычева Г.Е. Формирование элементарных математических представлений у дошкольников. – М.: Книголюб, 2007.

11.  Шалаева Г. Математика для маленьких гениев дома и в детском саду. – М.: АСТ, Слово, 2009.


Информация о работе «Логико-математические игры в работе со старшими дошкольниками как средство формирования логического мышления»
Раздел: Педагогика
Количество знаков с пробелами: 52868
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
131247
4
8

... воззрений. Именно педагоги высокого класса способны внести в действие резервы главного воспитательного возраста - дошкольного. 1.4. Педагогические условия интеллектуального развития старшего дошкольника в процессе формирования первичных математических представлений Академик А.В.Запорожец писал, что оптимальные педагогические условия для реализации потенциальных возможностей маленького ребенка, ...

Скачать
73675
5
2

... знания. Взаимопереход ясных и неясных знаний ребенка, с точки зрения Н. Н. Поддъякова, составляет суть саморазвития детского мышления   1.3 Арифметическая задача как средство развития логического мышления   В процесс математического и общего умственного развития детей старшего дошкольного возраста существенное место занимает обучение их решению и составлению простых арифметических задач. В ...

Скачать
40984
4
2

... темпов развития детей: одни дольше сохраняют черты младшего возраста, перестройка их поведения и деятельности как бы замедляется, другие наоборот, «взрослеют» быстрее и уже со второй половины среднего дошкольного возраста все отчетливее начинают проявлять черты более старшей возрастной ступени. Исходя из этого, развивающая среда должна обязательно включать в себя игровой материал разного уровня ...

Скачать
97331
12
6

... интеллект в свою очередь способствует формированию данных качеств личности. Эту взаимосвязь можно отобразить следующим образом: Личностные качества субъекта Интеллектуальное развитие. 1.2 Использование дидактических игр как средства развития интеллекта дошкольников Игра - основной вид деятельности ребёнка в дошкольном возрасте, играя, он познаёт мир людей, играя, ребёнок развивается. В ...

0 комментариев


Наверх