2.2. СЧЕТ С УЧАСТИЕМ РАЗНЫХ АНАЛИЗАТОРОВ
Изучение количественных отношений, определение большего и меньшего числа сочетают с тренировкой в счете с участием различных анализаторов: в счете звуков, движений, в счете предметов путем ощупывания. Упражнения по-разному комбинируют. Например, дети отсчитывают столько же игрушек, сколько звуков они услышали, находят карточку, на которой столько же кружков, сколько раз они подняли руки, или приседают столько раз, сколько кружков на карточке. Они считают на ощупь пуговицы, нашитые на карточку, и столько же раз хлопают в ладоши или на 1 раз больше (меньше). Например: «Отгадайте, сколько пуговиц на карточке у Сережи, если он хлопнул в ладоши на 1 раз больше (меньше). Сосчитайте, сколько флажков. Подумайте, сколько раз надо поднять руку, чтобы движений сделать на 1 больше (меньше), чем стоит флажков».
Упражнения в установлении равенства и неравенства численностей множеств с включением разных анализаторов имеют место почти на каждом занятии.
2.3. УПРАЖНЕНИЯ В ЗАПОМИНАНИИ ЧИСЕЛ
В подготовке детей к деятельности вычисления большое значение имеет развитие памяти на числа. Система специально подобранных упражнений позволяет тренировать ребят в запоминании чисел в связи с называнием предметов, их качественных признаков и пространственного расположения.
Воспитатель размещает на столе несколько групп предметов, по очереди вызывает кого-либо из детей сосчитать предметы той или иной группы, предлагает запомнить число предметов. Затем закрывает все салфеткой и проверяет, запомнил ли каждый, сколько было тех или иных предметов. Можно не вызывать персонально кого-либо из детей к столу, а предложить всем сосчитать игрушки про себя.
Усложнение упражнений: увеличивают количество групп игрушек от 2 до 6—7, число предметов связывают с их качественными признаками и пространственным расположением. Например, детям предлагают запомнить, по скольку матрешек красного, синего и зеленого цвета на столе или сколько длинных, сколько коротких лент и сколько лент средней величины, сколько матрешек в разных группах и как они расставлены (5 стоят в кругу, 6 — парами, 7 — друг за другом и т. д.).
Данным упражнениям обычно отводят 5—7 мин в начале занятия. Аналогичным образом усложняют упражнения в запоминании чисел при отсчете предметов. Вначале детям предлагают отсчитать 2 группы, разных предметов, например 4 елочки и 7 грибков, несколько позднее — отсчитать 2 группы однородных предметов, отличающихся качественными признаками: цветом, формой или размером, и, наконец, не только отсчитать 2 группы предметов, но и расположить их в определенном месте. («7 цилиндров поставь посередине стола, а 7 кубиков — с правой стороны стола. 8 кружков положи в верхний левый угол, а 7 фигур овальной формы — вдоль правого края листа».)
По указанию воспитателя дети устанавливают определенные пространственные отношения между предметами: вверху, внизу, слева, справа, посередине, в центре, между, рядом, напротив, с левой, с правой стороны, по кругу и др. Выполнив задание, они каждый раз рассказывают о том, сколько каких предметов и куда поместили.
Повысить интерес к занятиям позволяют игровые упражнения «Чего не стало?», «Что изменилось?». Например, воспитатель размещает на столе 2 группы предметов. (Предметов поровну, в этом убеждаются дети, сосчитав их.) На сигнал «Ночь!» дети закрывают глаза, а воспитатель либо убирает, либо добавляет 1 предмет. На сигнал «День!» ребята открывают глаза и догадываются, что изменилось, объясняют, сколько было предметов, сколько добавили или убрали, сколько стало или осталось, больше или меньше стало или осталось. Ценно, что в поисках правильного ответа дети сопоставляют наглядно представленные совокупности предметов с их образами, оставшимися в памяти. Такие упражнения позволяют перейти к сравнению совокупностей предметов по представлению и в конечном итоге к сравнению чисел.
В процессе выполнения упражнений полезны вопросы, требующие обобщения знаний: «Всегда ли одинаковое количество предметов расположено одинаково? Изменится ли количество предметов, если их расположить по-разному? Чего больше и чего меньше: 7 кружков или 6 петушков, 8 больших деревьев или 9 маленьких веток?» При этом используют элементы соревнования: «Кто быстрее скажет, у кого больше ног: у петуха или коровы? У коровы или пчелы? Кто быстрее назовет предмет, у которого 5 каких-то частей?» (На руке 5 пальцев, у звездочки 5 концов и пр.)
3. Счет групп предметов. Деление целого на части
3.1. СЧЕТ ГРУПП ПРЕДМЕТОВ
При закреплении навыков счета и отсчета важно наряду со счетом отдельных предметов упражнять детей в счете групп, состоящих из однородных предметов.
Дошкольникам предъявляют группу, составленную из равных количеств однородных предметов: матрешек, кубиков, конусов, чашек и т. п. — или моделей геометрических фигур: треугольников, кругов и т. п. Цветные изображения предметов или геометрических фигур могут размещаться на фланелеграфе. Задают вопрос: «Сколько групп...? Сколько... в каждой группе? Сколько всего...?» Отвечая на последний вопрос, дети пересчитывают предметы по одному.
Оживление вносят игровые моменты. Например, воспитатель размещает на фланелеграфе картинки с изображением самолетов и спрашивает: «Сколько звеньев самолетов? Сколько самолетов в каждом звене? Сколько рядов самолетов? Сколько всего самолетов?» Затем дети закрывают глаза, а воспитатель меняет расположение игрушек. Дети открывают глаза, отгадывают, что изменилось, и считают, сколько теперь звеньев самолетов, по скольку самолетов в каждом звене и т. п.
Позднее детям предлагают отсчитать определенное количество предметов и разложить их группами: по 2, по 3, по 4, по 5. Выясняют, сколько групп получилось и по скольку предметов в каждой группе. Вначале можно использовать сюжетный иллюстративный материал, например разделить 8 рыбок в 2 (4) аквариума, а затем абстрактный — геометрические фигуры.
После того как дети выполнят задания и расскажут, сколько получилось групп и по скольку предметов в каждой, им предлагают подумать, сколько станет групп, если в каждой группе будет не по 3, а по 2 предмета или на 1 предмет больше, или, наоборот, сколько будет предметов в каждой группе, если групп станет на 1 больше (меньше) или 4 группы, вместо 3, 2 вместо 3 и т. п.
Нельзя допускать, чтобы дети действовали на авось. Надо предлагать им сначала подумать и самим догадаться, как перестроить группы, не разрушая их, а потом проверить, не ошиблись ли они. Например, распределили 6 кружков на 2 группы, причем в каждой группе по 3 кружка. Надо сделать так, чтобы стало 3 группы кружков. Для этого ребята должны взять по 1 кружку из каждой группы и составить новую.
Каждый раз устанавливают связь между количеством групп и количеством предметов в группе. Дети видят: увеличивают количество групп — уменьшают количество предметов в каждой из них, уменьшают количество групп — увеличивают в каждой из них количество предметов (при условии, что общее число предметов одно и то же).
Упражнениям в счете групп предметов отводят 6—7 занятий. Они имеют существенное значение для развития понятия числа. В качестве единицы счета теперь наряду с отдельными предметами выступают группы предметов. Таким образом, единица отвлекается от отдельностей.
... нецелесообразности перенесения содержания и методов школьного обучения на эту ступень. Отметим, что совершенствование преемственности в работе детского сада и школы обеспечит условия успешного обучения в первом классе. При этом важно знание воспитателями основных подходов в методике обучения математике в первом классе, ознакомление их с современными учебниками. Сформировать готовность к обучению ...
... . Игру как метод обучения Е.И. Тихеева предлагала вводить по мере того, как то или другое числовое представление уже «извлечено детьми из самой жизни». В 30-е гг. идею использования игр в обучении дошкольников счёту обосновывала Ф.Н. Блехер. Существенный вклад в разработку дидактических игр и включения их в систему обучения дошкольников началам математики внесли Т.В. Васильева, Т.А. Мусейибова, ...
... по обучению детей счету в средней группе: - основное внимание при обучении счету уделяется упражнениям в сравнении численностей двух множеств (групп). - обучение счету в средней группе детского сада необходимо вести на наглядной основе. - обучение счету путем поэлементного сопоставления двух предметных множеств помогает подготовить детей к познанию отношений между числами. - обучение счету ...
... тоже надо уметь читать: понимать принципы ее составления, знать точки отсчета, размерность. Целью нашей работы был поиск эффективных путей формирования всех компонентов готовности к обучению в школе в условиях детского образовательного учреждения. В теоретической части нашего исследования мы рассмотрели взгляды отечественных психологов на проблему психологической готовности детей к обучению в ...
0 комментариев