2.3 Возможности учебного материала для развития мировоззрения, мышления, политехнического развития обучения.
Научные возможности темы.
Научные возможности темы "Основы электродинамики" огромны. Здесь учащиеся знакомятся с новыми физическими величинами, законами, значение и тех и других очень важно в жизни: учащиеся впервые знакомятся с новыми физическими величинами и единицами их измерений; знакомятся с новыми физическими явлениями (электризация тел, делимость заряда и др.); знакомятся с новыми законами физики - законом Ома и Джоуля – Ленца, законом сохранения; углубляется представление о фундаментальных физических величинах - работе, мощности; знакомятся с новым видом существования материи - электрическим полем; подчеркиваются физические характеристики поля, заряда, вещества - напряжение, сила тока, сопротивление; углубляются знания о строении вещества, а именно тема позволяет "заглянуть" внутрь атома и показать его строение по модели Резерфорда; узнают о том, что существуют два вида зарядов; рассматривают основы электронной теории.
Мировоззренческое значение темы.
Тема позволяет накопить материал для последующих обобщений и создать у учеников представление о материи и ее движении и о взаимосвязи явлений: убеждаем в существовании явления электризации тел в природе; показываем, сложность атома; убеждаем в существовании особого вида материи – электрического поля; подчеркиваем характеристики заряда, поля, проводника; подчеркиваем связь между силой тока, сопротивлением и напряжением; убеждаем в реальной объективности закона Ома для участка цепи при последовательном и параллельном соединениях; убеждаем в существовании закона Джоуля - Ленца; показываем исторический аспект темы, развитие данного раздела физики и техники отечественными и зарубежными учеными; показываем отличие движения заряженных частиц в проводнике и сверхпроводнике; показываем различие между электрическими и гравитационными полями; убеждаем, что всякое взаимодействие передается с конечной скоростью.
Развивающее значение темы.
Данная тема обладает большими возможностями для развития умений наблюдать, анализировать конкретные ситуации, выделять определенные признаки, сравнивать наблюдаемые явления: данная тема вносит большой вклад для развития логического и абстрактного мышления; используются аналогии; широко используется экспериментальный метод; развиваются умение строить и читать графики, строить схемы электрических цепей, читать эти схемы, собирать их; развитие умений видеть в быту, технике электрические явления и объяснять их с помощью изученного материала; развитие умений, навыков работы с приборами: амперметром, вольтметром, реостатом; продолжение развития умений работать с учебником, справочником, умений делать записи в тетрадях и т.п.
Политехническое значение темы.
Значение темы в политехническом аспекте огромно, т.к. учащиеся на каждом шагу сталкиваются с электричеством в повседневной жизни. С изучением данной темы программа предусматривает формирование у учащихся целого ряда практических умений и навыков: сборка простейших электрических цепей; включение измерительных приборов в цепь; измерение силы тока, напряжения, ЭДС; определение сопротивления проводников; измерение силы тока в цепи с помощью реостата; определение работы и мощности тока; расчет полного сопротивления, напряжения, силы тока при различных соединениях элементов цепи.
2.4 Физический эксперимент.
Электризация тел.
Оборудование: 1)маятник электрический на изолирующем штативе, 2)палочка из органического стекла, 3)палочка из эбонита, 4)кусок меха.
Опыта показывает факт электризации тел. Палочку из органического стекла натирают куском меха, а затем осторожно подносят к висящей на шелковой нити станиолевой гильзе электрического маятника. Гильза притягивается к палочке, обнаруживая тем самым, что палочка находится в необычном состоянии: она наэлектризована.
Опыт повторяют, заряжая трением о мех эбонитовую палочку или гребенку из пластмассы, трением о бумагу – стеклянную палочку или сургуч, и получают каждый раз тот же результат: наблюдают притяжение маятника к наэлектризованному телу.
Два рода зарядов.
Оборудование. 1)маятники электрические на изолирующих штативах (пара), 2)палочка из органического стекла, 3)палочка из эбонита, 4)кусок меха.
Заряженную трением о мех палочку из органического стекла подносят к станиолевой гильзе электрического маятника. Гильза сначала притягивается к палочке, но, коснувшись последней, отскакивает и удерживается на некотором расстоянии от нее. Опыт показывает, что во время соприкосновения часть заряда с палочки переходит на гильзу, после чего возникает взаимодействие двух заряженных тел, которое проявляется во взаимном отталкивании.
Тем же способом заряжают второй маятник и показывают их взаимное отталкивание, сдвигая штативы маятников и сближая точки подвеса нитей.
После этого один из маятников заряжают палочкой из органического стекла, а другой – из эбонита. Затем сближают маятники, не давая им соприкасаться, и наблюдают притяжение. Раздвинув маятники, подносят поочередно то к одному, то к другому маятнику заряженную палочку и наблюдают в одном случае притяжение, а в другом – отталкивание.
Результаты наблюдений позволяют сделать вывод о существовании электрических зарядов двоякого рода, а также о том, что однородные (одноименные) заряды взаимно отталкиваются, разнородные (разноименные) – притягиваются.
Далее заряжают электрические маятники разноименно и медленно сближают их до тех пор, пока они, притягиваясь, не коснутся друг друга. После соприкосновения гильзы опадают и практически оказываются почти незаряженными.
Устройство и действие электроскопа, электрометра.
Оборудование: 1)электроскоп или электрометр, 2)палочка из органического стекла, 3)кусок меха.
Электроскоп – прибор чувствительный и удобный, служит для обнаружения заряда. Главной части электроскопа является металлический стержень с двумя подвешенными к нему станиолевыми полосами – лепестками. Все остальное (стеклянная банка, пробка) служит только для установки главной части и защиты ее от повреждения.
Для демонстрации действия электроскопа электризуют палочку, а затем заряжают ею электроскоп. В результате отталкивания одноименных зарядов станиолевые лепестки у заряженного электроскопа разойдутся на больший или меньший угол в зависимости от величины сообщенного заряда.
Проводники и изоляторы.
Оборудование: 1)электроскопы (пара), 2)разрядник прямой на изолирующей ручке, 3)линейка деревянная ученическая, 4)палочка стеклянная, 5)палочка из органического стекла, 6)кусок меха.
Устанавливают рядом два электроскопа и, зарядив один из них с помощью палочки из органического стекла, соединяют шарики электроскопов проволочным разрядником, держа его за изолирующую ручку. Лепестки заряженного электроскопа резко опадают, а незаряженного – расходятся так, что углы между лепестками в обоих электроскопах оказываются одинаковыми. Это значит, что электрический заряд распределился поровну между двумя электроскопами.
Повторяют опыт, но шарики электроскопов соединяют деревянной линейкой, держа ее на планке из органического стекла. При этом наблюдается медленное опадание лепестков одного электроскопа, в то же время лепестки другого электроскопа так же медленно расходятся.
Соединяют заряженный электроскоп с незаряженным, прикасаясь к шарикам стеклянной палочкой, и демонстрируют отсутствие каких-либо изменений в показаниях приборов. Прикоснувшись к заряженному электроскопу проволокой, присоединенной к водопроводному крану, или специально сделанному заземлению, показывают, что заряд таким способом может быть отведен в землю. Прикосновение руки дает тот же эффект, следовательно, человеческое тело – проводник.
Этих опытов достаточно для выводов о существовании проводников и изоляторов и для показа их применения в демонстрируемых приборах (изолирующие ручки, подставки и т. п.).
Электрометр – электроскоп, вместо лепестков на металлическом стержне укреплена стрелочка. Она заряжаясь от стержня отталкивается на некоторый угол.
Электризация через влияние.
Оборудование: 1)электроскопы (пара), 2)палочки из схимнического стекла, 3)палочка эбонитовая, 4)металлическая трубка на изолирующей ручке, 5)кусок мехи, 6) кусок листовой резины.
Опыт состоит из трех отдельных демонстраций, которыми решают следующие задачи: 1)выясняют явление электростатической индукции, 2)показывают применение этого явления для определения знака неизвестного заряда, 3)показывают способ получения электрических зарядов через влияние.
1. К шарику незаряженного электроскопа медленно приближают палочку из органического стекла, заряженную трением о мех. Лепестки электроскопа расходятся тем больше, чем ближе к шарику расположена палочка. При удалении палочки лепестки вновь опадают.
Из проведенного опыта пока нельзя сделать никаких определенных заключений о знаке полученного на лепестках заряда.
2. Палочкой из органического стекла, потертой о мех, сообщают электроскопу положительный заряд, так чтобы угол отклонения лепестков был не слишком большим. Возобновив на палочке положительный заряд, приближают ее к стержню заряженного положительно электроскопа. Угол отклонения лепестков увеличивается.
Поднося к тому же электроскопу эбонитовую палочку, заряженную отрицательно трением о мех, замечают, что лепестки электроскопа опадают. Опыт повторяют, поменяв знак заряда электроскопа.
3. Два незаряженных электроскопа соединяют разрядником и к шарику одного из них подносят хорошо заряженную палочку. Лепестки электроскопов расходятся. Взявшись за изолирующую ручку, снимают разрядник, после чего удаляют палочку. Оба электроскопа остаются заряженными.
К шарику незаряженного электроскопа подносят заряженную палочку. Лепестки электроскопа расходятся. Прикасаются к шарику пальцем. Лепестки спадают. Отнимают от шарика палец и после этого удаляют палочку. Лепестки электроскопа расходятся, указывая на присутствие заряда.
Устройство конденсатора.
Оборудование: 1)конденсаторы постоянной емкости разные, 2)конденсатор бумажный препарированный, 3)конденсатор переменной емкости.
Для демонстрации устройства конденсатора постоянной емкости удобно воспользоваться следующими препарированными конденсаторами: бумажным конденсатором большой емкости, электролитическим конденсатором и слюдяным. Сначала показывают общий вид различных конденсаторов, а затем отдельные детали устройства: обкладки, диэлектрик, корпус, проходные изоляторы.
Энергия заряженного конденсатора.
Оборудование: 1)батарея конденсаторов демонстрационная, 2)выпрямитель ВУП-1, 3)вольтметр демонстрационный с дополнительным сопротивлением 33 ком, 4)панель с четырьмя лампами накаливания, 5)переключатель однополостной демонстрационный, 6)провода соединительные.
Собирают установку. От выпрямителя подают напряжение 60 в,
Включают половину емкости конденсаторов и заряжают ее, замыкают на короткое время цепь зарядки переключателем. Затем переключают батарею на разрядку через одну лампу и наблюдают, как при этом лампа не очень ярко вспыхивает.
Увеличивают емкость батареи в 3 раза и при прежнем напряжении снова заряжают конденсатор. Теперь при разрядке лампа вспыхивает ярче, чем в первом случае. Подключив две лампы, повторяют опыт. По наблюдениям можно сказать, что теперь накал нитей ламп приблизительно такой же, как и в первом случае, т. е. энергия конденсатора увеличилась в 2 раза.
Далее показывают, что энергия заряженного конденсатора зависит и от разности потенциалов на его пластинах. С этой целью при напряжении 50-60 в повторяют опыт с половиной емкости батареи конденсаторов и наблюдают свечение одной лампы. Затем увеличивают напряжение в 2 раза и, подключив сразу 2 лампы, наблюдают довольно яркое их вспыхивание. Это подтверждает увеличение энергии заряженного конденсатора, во всяком случае, более чем в 2 раза. После этого подключают 4 лампы, которые вспыхивают, как и в первом случае.
Таким образом, опыт показывает зависимость энергии заряженного конденсатора от его емкости и разности потенциалов и подводит к пониманию формулы:
Проводники и диэлектрики.
Оборудование: 1)изолирующие штативы (два), 2)шаровые конденсаторы, 3)диэлектрическая стрелка на подставке, 4)кусок проволоки, 5)капроновая (или шелковая) нить, 6)неоновая лампочка.
В изолирующие штативы вставляют шары из комплекта, прилагаемого к электрометрам, и устанавливают штативы по концам демонстрационного стола, напротив одного из них ставят алюминиевую стрелку. Соединив шары проволокой электризуют шар около которого нет стрелки. Затем соединяют электрометры ниткой, вместо проволоки, и повторяют опыт. Делают вывод, что проволока проводит ток, а нить нет.
Можно так же посреди проволоки включить неоновую лампочку.
0 комментариев