1. Приемы, теоретическая основа которых — конкретный смысл арифметических действий.
К ним относятся: приемы сложения и вычитания чисел в пределах 10 для случаев вида а+2, а+3, а+4, а+0; приемы табличного сложения и вычитания с переходом через десяток в пределах 20; прием нахождения табличных результатов умножения, прием нахождения табличных результатов деления (только на начальной стадии) и деления с остатком, прием умножения единицы и нуля.
Это первые приемы вычислений, которые вводятся сразу после ознакомления учащихся с конкретным смыслом арифметических действий. Они, собственно, и дают возможность усвоить конкретный смысл арифметических действий, поскольку требуют применения конкретного смысла. Вместе с тем эти первые приемы готовят учащихся к усвоению свойств арифметических действий. Таким образом, хотя в основе некоторых из названных приемов и лежат свойства арифметических действий (так, прибавление двух по единице выполняется на основе использования свойства прибавления суммы к числу), эти свойства учащимся явно не раскрываются. Названные приемы вводятся на основе выполнения операций над множествами.
2. Приемы, теоретической основой которых служат свойства арифметических действий.
К этой группе относится большинство вычислительных приемов. Это приемы сложения и вычитания для случаев вида 2+8, 54=F20, 27=F3, 40—6,45=F7, 50+23, 67+32, 74+18; аналогичные приемы для случаев сложения и вычитания чисел больших, чем 100, а также приемы письменного сложения и вычитания; приемы умножения и деления для случаев вида 14-5, 5-14, 81:3, 18-40, 180:20, аналогичные приемы умножения и деления для чисел больших 100 и приемы письменного умножения и деления.
Общая схема введения этих приемов одинакова: сначала изучаются соответствующие свойства, а затем на их основе вводятся приемы вычислений.
3. Приемы, теоретическая основа которых — связи между компонентами и результатами арифметических действий.
К ним относятся приемы для случаев вида 9 — 7, 21:3, 60:20, 54:18, 9:1, 0:6.
При введении этих приемов сначала рассматриваются связи между компонентами и результатом соответствующего арифметического действия, затем на этой основе вводится вычислительный прием.
4. Приемы, теоретическая основа которых — изменение результатов арифметических действий в зависимости от изменения одного из компонентов.
Это приемы округления при выполнении сложения и вычитания чисел (46+19, 512 — 298) и приемы умножения и деления на 5, 25, 50.
Введение этих приемов также требует предварительного изучения соответствующих зависимостей.
5. Приемы, теоретическая основа которых — вопросы нумерации чисел.
Это приемы для случаев вида a=Fl, 10 + 6, 16—10, 16—6, 57-10, 1200:100; аналогичные приемы для больших чисел.
Введение этих приемов предусматривается после изучения соответствующих вопросов нумерации (натуральной последовательности, десятичного состава чисел, позиционного принципа записи чисел).
6. При е, мы, теоретическая основа которых — правила.
К ним относятся приемы для двух случаев: а Л, а-0. Поскольку правила умножения чисел на единицу и нуль есть следствия из определения действия умножения целых неотрицательных чисел, то они просто сообщаются учащимся и в соответствии с ними выполняются вычисления.
Целый ряд случаев может быть отнесен не только к указанной группе приемов, но и к другой. Например, случаи вида 46+19 можно отнести не только к четвертой группе, но и ко второй. Это зависит от выбора теоретической основы вычислительного приема.
Как видим, все вычислительные приемы строятся на той или иной теоретической основе, причем в каждом случае учащиеся осознают сам факт использования соответствующих теоретических положений, лежащих в основе вычислительных приемов. Это — реальная предпосылка овладения учащимися осознанными вычислительными навыками. Общность подходов к раскрытию вычислительных приемов каждой группы — есть залог овладения учащимися обобщенными вычислительными навыками. Возможность использования различных теоретических положений при конструировании различных приемов для одного случая вычисления (например, для случая сложения 46+19) является предпосылкой формирования рациональных гибких вычислительных навыков.
В принятой сейчас системе изучения арифметических действий предусматривается такой порядок введения приемов, при котором постепенно вводятся приемы, включающие большее число операций, а ранее усвоенные приемы включаются в качестве основных операций в новые приемы. Например, при изучении сложения и вычитания в пределах 10, сначала вводятся приемы для случаев вида а + 1, после их изучения и выработки соответствующих навыков вводятся приемы для случаев а + 2, которые включают в качестве операций случаи а + 1; затем вводятся приемы для случаев а+~3, включающие в качестве операций случаи а + 2 и т. д. Как видим, выполняя операции, составляющие новый прием, ученик не только усваивает этот прием, но и совершенствует навыки вычислений ранее рассмотренных случаев. Такая система включения приемов создает благоприятные условия для выработки у учащихся прочных и автоматизированных навыков.
В методике работы над каждым отдельным приемом можно предусмотреть ряд этапов.
На этом этапе создается готовность к усвоению вычислительного приема, а именно: учащиеся должны усвоить те теоретические положения, на которых основывается вычислительный прием, а также овладеть каждой операцией, составляющей прием. Следовательно, чтобы обеспечить соответствующую подготовку к введению приема, надо проанализировать прием и установить, какими знаниями должен овладеть ученик и какие вычислительные навыки он должен уже приобрести. Например, можно считать, что ученики подготовлены к восприятию вычислительного приема для случаев а +" 2, если они ознакомлены с конкретным смыслом действий сложения и вычитания, знают состав числа 2 и овладели вычислительными навыками сложения и вычитания для случаев вида а+1; готовностью к введению приема внетабличного умножения (14-5) будет: знание учащимися правила умножения суммы на число, знание десятичного состава чисел в пределах 100 и овладение навыками табличного умножения, навыками умножения числа 10 на однозначные числа, навыками сложения двузначных чисел. Центральное же звено при подготовке к введению нового приема — овладение учеником основными операциями, которые войдут в новый прием.
На этом этапе ученики усваивают суть приема: какие операции надо выполнять, в каком порядке и почему именно так можно найти результат арифметического действия.
При введении большинства вычислительных приемов целесообразно использовать наглядность. Для приемов первой группы это — оперирование множествами. Например, прибавляя к 7 число 2, придвигаем к 7 квадратам (кружкам и т. п.) 2 квадрата (кружка и т. п.) по одному. При ознакомлении с приемами второй группы в качестве наглядности используется развернутая запись всех операций, что весьма положительно влияет на усвоение приема. Например, при введении приема внетабличного умножения выполняется такая запись: 14-5= (10+4) -5=10-5 + 4-5=70. в ряде случаев наряду с развернутой записью используется и оперирование множествами (например, при ознакомлении с приемами сложения и вычитания в пределах 100).
Выполнение каждой операции важно сопровождать пояснениями вслух. Сначала эти пояснения выполняются под руководством учителя, а затем учащиеся выполняют их самостоятельно. В пояснении указывается, какие выполняются операции, в каком порядке и называется результат каждой из них, при этом не поясняются ранее изученные приемы, входящие в качестве операций в рассматриваемый прием (основные операции). Например, прибавляя к 7 число 2, ученик так поясняет выполнение операций: к семи прибавлю 1, получится 8; к восьми прибавлю 1, получится 9 (как прибавить 1, не поясняется); при умножении чисел 14 и 5 пояснение будет следующим: заменю число 14 суммой разрядных слагаемых 10 и 4, получится пример: сумму чисел 10 и 4 умножить на 5; умножим на 5 первое слагаемое — 10, получится 50; умножим на 5 второе слагаемое — 4, получится 20; сложим результаты 50 и 20, получится 70 (здесь не поясняется, как умножить 10 на 5, как умножить 4 на 5 и как сложить 50 и 20). Пояснение выбора и выполнение операций приводит к пониманию сущности каждой операции и всего приема в целом, что в дальнейшем станет основой овладения учащимися осознанными вычислительными навыками.
Степень самостоятельности учащихся должна увеличиваться при переходе от приема к приему одной группы. Следует учитывать, что во многих случаях ученики могут самостоятельно найти новый вычислительный прием и выполнить соответствующее обоснование. Например, установлено, что все приемы устных вычислений над числами в пределах 1000 учащиеся находят самостоятельно, поскольку эти приемы являются прямым аналогом приемов, изученных в концентре «Сотня» (сравнить: 9 + 7 и 90+70, 8-4 и 80-4 и т. п.). Значительно повышается доля самостоятельности учащихся в «открытии» новых приемов, если используются «предписания — планы» (Л. Н. Ланда). Например, при изучении сложения и вычитания в пределах 100 учащимся можно предложить руководствоваться при вычислениях таким планом: заменить одно из чисел суммой удобных слагаемых (часто удобными являются разрядные слагаемые), назвать, какой получился пример, решить этот пример удобным способом. Умение пользоваться таким планом приводит к тому, что ученики сами находят различные вычислительные приемы даже для новых случаев, а это есть предпосылка образования рациональных навыков и вместе с тем проявление осознанности и обобщенности вычислительного навыка.
На этом этапе учащиеся должны твердо усвоить систему операций, составляющих прием, и предельно быстро выполнять эти операции, т. е. овладеть вычислительным навыком.
В процессе работы здесь важно предусмотреть ряд стадий в формировании у учащихся вычислительных навыков.
На первой стадии закрепляется знание приема: учащиеся самостоятельно выполняют все операции, составляющие прием, комментируя выполнение каждой из них вслух и одновременно производя развернутую запись, если она была предусмотрена на предыдущем этапе. Таким образом, здесь учащиеся выполняют самостоятельно то же, что на предыдущем этапе выполняли под руководством учителя. Подробное объяснение и развернутая запись позволяют им осознанно усвоить вычислительный прием. Начинается эта стадия, как правило, на том же уроке, на котором учитель знакомит детей с новым приемом. Заметим, что не следует слишком долго задерживать учащихся на этой стадии, иначе они настолько привыкают к подробной записи и подробному объяснению, что всегда пользуются ими, а это тормозит свертывание выполнения операций.
На второй стадии происходит частичное свертывание выполнения операций: учащиеся про себя выделяют операции и обосновывают выбор и порядок их выполнения, вслух же они проговаривают выполнение основных операций, т. е. промежуточных вычислений. Надо специально учить детей выделять основные операции в каждом вычислительном приеме. Так, при формировании навыка внетабличного умножения учитель на этой стадии указывает, чтобы при умножении, например, 27 на 3 ученики про себя заменили число 27 суммой разрядных слагаемых (20 и 7), про себя сказали, какой получился пример (сумму чисел 20 и 7 умножить на 3), а вслух объяснили, как удобнее решить этот пример, называя только, над какими числами и какие арифметические действия они выполняют (20 умножить на 3, получится 60; 7 умножить на 3, получится 21; к 60 прибавить 21, получится 81). Развернутая запись при этом не выполняется. Сначала такое проговаривание ведется под руководством учителя, а затем самостоятельно. Проговаривание вслух помогает выделить и подчеркнуть основные операции, а выполнение про себя вспомогательных операций способствует их свертыванию, т. е. быстрому выполнению в плане внутренней речи.
На третьей стадии происходит полное свертывание выполнения операций: учащиеся про себя выделяют и выполняют все операции, т. е. здесь происходит свертывание и основных операций. Чтобы добиться этого, надо и на этой стадии руководить деятельностью учащихся: учитель предлагает детям выполнять про себя и промежуточные вычисления (основные операции), а называть или записывать только окончательный результат. На этой стадии свертывание основных операций будет несколько отставать от свертывания вспомогательных операций (их свертывание началось на предыдущей стадии), благодаря чему основные операции будут актуализироваться, т. е. ученики воспроизведут именно те операции, выполнение которых позволит им правильно и быстро найти результат арифметического действия. Актуализация основных операций и выполнение их в свернутом плане и есть собственно вычислительный навык.
На четвертой стадии наступает предельное свертывание выполнения операций: учащиеся выполняют все операции в свернутом плане, предельно быстро, т. е. они овладевают вычислительными навыками. Это достигается в результате выполнения достаточного числа тренировочных упражнений.
На всех стадиях формирования вычислительного навыка решающую роль играют упражнения на применение вычислительных приемов, причем содержание упражнений должно подчиняться целям, которые ставятся на соответствующих стадиях. Важно, чтобы было достаточное число упражнений, чтобы они были разнообразными как по числовым данным, так и по форме, чтобы при этом предусматривались аналогии в приемах и в соответствии с ними предлагались упражнения на сравнение приемов, сходных в том или ином отношении.
Названные стадии не имеют четких границ: одна постепенно переходит в другую. Надо иметь в виду, что свертывание выполнения операций не у всех учащихся происходит одновременно, поэтому важно время от времени возвращаться к полному объяснению и развернутой записи приема. Продолжительность каждой стадий определяется сложностью приема, подготовленностью учащихся и целями, которые ставятся на каждой стадии.
Правильное выделение стадий позволит учителю управлять процессом усвоения учащимися вычислительного приема, постепенного свертывания выполнения операций, образования вычислительных навыков.
... дидактические игры и дискуссии; 4. использовать такие методы обучения, как беседа, пример, наглядный показ; 5. стимулировать коллективные формы работы, взаимодействие учеников в учении. В активизации познавательной деятельности учащихся большую роль играет умение учителя побуждать своих учеников к осмыслению логики и последовательности в изложении учебного материала, к выделению в нем ...
... самооценкой индивида (похвала). Разнообразие возможных приемов и сочетаний мотивирования столь же обширны, как сама жизнь, как те побуждения, которые определяют деятельность человека. Глава II. Приемы активизации познавательной деятельности. В процессе приобретения учащимися знаний, умений и навыков важное место занимает их познавательная активность, умение учителя активно руководить ею. Со ...
... процесс дидактических игр; - подвергнуть анализу и сравнить результаты до и после экспериментального воздействия. Экспериментальная гипотеза: активизация познавательной деятельности младших школьников посредством использования дидактических игр выступает как условие успешности обучения Независимая переменная – дидактические игры. Зависимая переменная – активизация познавательной ...
... процесс, предполагающий использование различных приемов в системе средств развивающего обучения и правильного стиля отношений между учителем и учащимися. §5. Приемы и средства активизации познавательной деятельности на уроках физики. Активизация познавательной деятельности учащихся должна начинаться с использования различных средств, обеспечивающих глубокое и полное усвоение учащимися материала, ...
0 комментариев