2.1      Поняття математичних здібностей та їх структура

Математичні здібності - це здатність утворювати на математичному матеріалі узагальнені, згорнуті, гнучкі й обернені асоціації та їх системи. До складових математичних здібностей слід віднести:

-          здатність до формалізації математичного матеріалу, відокремлення форми від змісту, абстрагування від реальних ситуацій і їх кількісних відношень та просторових форм; оперування структурами відношень і зв'язків;

-          здатність до узагальнення матеріалу;

-          здатність до оперування числовою і знаковою символікою;

-          здатність до логічних міркувань, пов'язаних з потребою доводити, робити висновки;

-          здатність до скорочення процесу міркувань;

-          здатність до переходу від прямого до оберненого ходу думки;

-          гнучкість мислення незалежно від впливу шаблонів.

Математика сприяє виробленню особливого виду пам'яті — пам'яті, спрямованої на узагальнення, творення логічних схем, формалізованих структур, виховує здатність до просторових уявлень.

Наявність математичних здібностей в одних учнів і недостатня розвинутість їх в інших вимагає від учителя постійного пошуку, шляхів формування і розвитку таких здібностей у школярів.

Рівнева диференціація з урахуванням психології математичних здібностей учнів збільшує можливості роботи вчителя. Такий підхід створює умови для розвитку здібностей учнів, які мають природжені задатки до занять математикою, і забезпечує посильною роботою учнів, які не мають таких задатків. Виконуючи посильні завдання, учень отримує впевненість у своїх силах.

Вивчаючи математичні здібності, В.А. Крутецький дійшов висновку, що "мозок деяких людей своєрідно орієнтований (настроєний) на виокремлення з навколишнього світу подразників типу просторових і числових відношень та символів і на оптимальну роботу саме з такими подразниками". Тому "звичайним математиком можна стати, видатним, талановитим математиком треба народитися".

2.2      Психологічний аналіз учбових задач

Розв'язування задач - це робота дещо незвичайна, адже це розумова робота. А щоб навчитися будь-якій роботі, треба спочатку добре вивчити той матеріал, над яким доведеться працювати, ті інструменти, з допомогою яких буде виконуватись робота.

Усі задачі можна поділити на три типи:

-          Задачі, які розв'язують для кращого засвоєння теорії;

-          Тренувальні вправи, мета яких - виробити навички;

-          Задачі, за допомогою яких розвивають математичні здібності учнів.

Для того щоб навчити учнів розв'язувати задачі, для початку, потрібно запропонувати їм розібратись у тому, що вони собою являють, як побудовані, з яких частин складаються, що потрібно знати, щоб розв'язати ту чи іншу задачу.

Учні п'ятого класу вже знають, що під математичною задачею розуміють будь-яку вимогу обчислити, побудувати, довести що-небудь, пов'язане з числовими величинами або геометричними фігурами. Арифметичною задачею називають вимогу знайти числове значення деякої величини, якщо дано числове значення інших величин і залежність, яка зв'язує їх як між собою, так і з шуканою величиною. У початкових класах в основному розглядаються так звані сюжетні задачі, в яких описується кількісна сторона деяких явищ. Сюжетну задачу, для розв'язання якої треба виконати дві чи більше пов'язаних між собою арифметичних дій, називають складеною. Щоб розв'язати складену задачу, пропоную учням спочатку скласти план розв'язування. План складається на основі аналізу задачі, який проводять від числових даних або від запитання.

Аналізу задачі передує ґрунтовне вивчення умови і запитання задачі.

Наприклад, задача. Велосипедист їхав 4 години із швидкістю 12 км/год. Йому залишилося проїхати на 16 км менше, ніж він проїхав. Яку відстань потрібно було проїхати велосипедисту?

Аналіз від числових даних. Відомо, що велосипедист їхав 4 години із швидкістю 12 км/год. За цими даними можна дізнатися, яку відстань проїхав велосипедист. Для цього треба швидкість помножити на час. Знаючи відстань, яку вже проїхав велосипедист, і те, що залишилося проїхати на 16 км менше, можна знайти відстань, яку залишилося проїхати. Для цього відстань, яку вже проїхав велосипедист, треба зменшити на 16 км. Знаючи, скільки кілометрів залишилося їхати, можна знайти весь шлях. Для цього треба виконати додавання знайдених відстаней.

Аналіз від запитання. У задачі треба знайти весь шлях, який має проїхати велосипедист. Ми не можемо одразу відповісти на це запитання, бо невідомо, скільки велосипедист вже проїхав і скільки йому залишилося їхати. Щоб знайти пройдений шлях, треба знати швидкість і час руху. Це в задачі відомо. Помножимо швидкість на час і дізнаємося про пройдений шлях. Відстань, яку велосипедист ще має проїхати, можна також знайти. Для цього знайдену відстань треба зменшити на 16 км. Отже, план розв'язування задачі такий:

1. Скільки кілометрів проїхав велосипедист за 4 години?

2. Скільки кілометрів велосипедисту залишилося проїхати?

3. Яку відстань мав проїхати велосипедист?

Підвищення ефективності навчання математики можна досягти, продуктивно реалізуючи всі дидактичні функції математичних задач.

Велику роль відіграють задачі, які учні складають самі. Складання задачі часто вимагає роздумів, які під час розв'язку готових задач не потрібні. Тому складання задач сприяє розвитку творчого мислення учнів.

Щоб вивчення математики викликало в учня задоволення, треба, щоб він заглибився у суть ідеї цієї науки, відчув внутрішній зв'язок усіх ланок міркувань, які дають можливість зрозуміти і саме доведення, і його логіку.

Якщо учень хоча б раз досяг ясності в розумінні суті, проник у внутрішній зв'язок понять і логічних висновків, то йому буде важко задовільнитися потім заучуванням без розуміння. І тоді він здійснить відкриття: процес власної думки вимагає значно менших зусиль і витрат часу, ніж вивчення напам'ять.

Щоб привчити учнів самостійно мислити, викликати в них віру у власні сили і розум , також виховати впевненість у своїх можливостях, необхідно примусити їх пройти через певні труднощі, а не подавати все в готовому вигляді.

У системі розвиваючого навчання під час вивчення математики важливе місце посідає обчислювальна практика. На 5-6 класи припадає основний обсяг роботи обчислень з раціональними числами. У наступних класах ці навички розвиваються і закріплюються, зростає питома вага наближених обчислень, використовується прикидка, оцінювання результатів обчислень. Широке використання мікрокалькуляторів не зменшує ролі обчислень без них і особливо усного виконання дій. Адже,користуючись мікрокалькуляторами,треба вміти робити прикидку очікуваного результату й округлювати його до потрібної точності, замінюючи деякі операції усним виконанням, уміти проаналізувати здобуту інформацію. Слід мати на увазі і розвиваючу функцію усних обчислень: вони активізують увагу і пам'ять учнів, спонукають їх до раціональної діяльності.

Якщо в учнів середніх класів добре сформовані ці навички, це є запорукою того, що в старших класах розв'язування задач не буде викликати особливих труднощів.

Уміння розв'язувати ту чи іншу задачу залежить від багатьох чинників. Але передусім необхідно навчитися розрізняти основні типи задач і уміти розв'язувати найпростіші з них.

Увесь процес розв'язування задачі можна розділити на вісім етапів:

-          аналіз задачі;

-          схематичний запис задачі;

-          пошук способу розв'язування задачі;

-          виконання розв'язування задачі;

-          перевірка розв'язку задачі;

-          дослідження задачі;

-          формулювання відповіді задачі;

-          аналіз розв'язування задачі.

Математичні задачі, для розв'язування яких в шкільному курсі математики існують готові правила, або ці правила безпосередньо випливають з означень чи теорем, що визначають програму розв'язування цих задач у вигляді послідовності кроків, називають стандартними. При цьому передбачається, що для виконання окремих кроків розв'язування стандартних задач в курсі математики існують конкретні правила.

Процес розв'язування стандартних задач має деякі особливості.


Информация о работе «Розвиток творчих здібностей учнів на уроках математики»
Раздел: Педагогика
Количество знаков с пробелами: 41618
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
38186
0
0

... чинників на розвиток творчих здібностей учнів. 1.2 Теоретичне обґрунтування проблеми розвитку творчих здібностей учнів 7-9 класів на уроках фізики на засадах моніторингового підходу Формування й розвиток творчих здібностей учнів виступають сьогодні однією з актуальних проблем української системи освіти. Розвиток та виховання здібних і талановитих дітей відповідає потребі формування творчого ...

Скачать
78051
0
0

... ; учні 9-го класу міркують індуктивним способом і їх мислення розвернене, а учні 10-го класу частіше використовують дедуктивний метод і міркують в скороченій формі. Вчені досліджували розвиток математичних здібностей протягом всього періоду шкільного навчання від молодшого до старшого шкільного віку. Були досліджені вікові особливості структури математичних здібностей, специфіка прояву формуючих ...

Скачать
99652
5
0

... допомога із застосуванням вибору рішення; попередження учнів про типові помилки, неправильні підходи і та.ін. Таким чином, основними шляхами розвитку творчого мислення молодших школярів є: Створення необхідних, сприятливих умов у процесі навчання; Дотримуватись вище названих рекомендацій щодо використання творчих завдань на уроках. Надавання усіх можливих видів диференційованої допомоги учням ...

Скачать
101141
1
0

... закладах. У додатках подано ряд ілюстративних матеріалів, котрі були використанні на практиці в школі і можуть послужити методичним матеріалом для підготовки та проведення уроків образотворчого мистецтва як студентами, так і вчителями. У дослідженні доведено: використання ілюстративного матеріалу є обов’язковим і ефективним методом наочного навчання; він незамінний в ході пояснення послідовност ...

0 комментариев


Наверх