3. Дидактические материалы и методика их использования
Дидактические материалы подразделяются на:
а) фабричные (самостоятельные и контрольные работы по 4-6 вариантам);
б) самодельные: карточки для индивидуальной работы (для сильных и слабых учеников), карточки для фронтальной работы, карточки для устного счёта.
Назначение “Дидактических материалов”: помощь в организации самостоятельного решения задач и выполнения упражнений учащимися по курсу математики (фронтальное или индивидуальное решение задач); чаще всего самостоятельные работы имеют обучающий характер; в организации по темам курса или обзорной контрольной работы.
Методика использования “Дидактических материалов”: учитель в соответствии с требованиями программы, составом класса, индивидуальными особенностями учащихся, тематическим планом изучения математики определяет содержание проводимых работ, сроки и продолжительность их выполнения, ставит перед самостоятельной работой конкретные цели и задачи (выбираем задачи, выполнение которых считает необходимым условием формирования у учащихся прочных математических умений и навыков); устанавливает действительную продолжительность предлагаемых самостоятельных и контрольных работ. Каждой работе из “Дидактических материалов” должен предшествовать краткий, но точный инструктаж учителя, в котором указано точное время выполнение работы, порядок решения задач или выполнения упражнений, некоторые особенности задач самостоятельной (контрольной) работы; пользование геометрическими инструментами, калькуляторами; можно указать возможные записи решений.
Каждая самостоятельная или контрольная работа должна организованно завершаться, т.е. должны быть подведены итоги и проведено это на том же уроке по возможности. При подведении итогов следует отметить наиболее рациональные и оригинальные решения, проанализировать наиболее часто повторяющиеся ошибки. Подведение итогов должно предусматривать и чёткое указание, чему научились учащиеся, какие новые знания, умения и навыки они приобрели.
4. Справочная и научно-популярная литература и методика их использования. Учебное оборудование по математике и методика использования его в учебной работеОбучение пользованию справочниками по математике, справочными таблицами и другой справочной литературой должно найти своё место при изучении математики в средней школе. Справочники необходимы по той причине, что для запоминания выбирается первостепенное, необходимое для изучения дальнейшего курса, а второстепенное можно найти в справочнике, он же поможет быстрее вспомнить изученное, но полузабытое, найти необходимый метод, изучение которого непредусмотрено программой.
Содержание и структура справочников по школьному курсу математики примерно одинаковы:
1) таблицы для вычислений (степеней, корней, обратных чисел, логарифмов, значений показательной и тригонометрической функций);
2) фактические сведения: формулы, определения понятий, алгоритмические предписания, примеры применения этих справок;
3) сведения, разъясняющие основные понятия и важнейшие методы школьного курса математики;
4) сведения о некоторых понятиях и методах математики, не включённых в школьные учебники.
Справочники:
а) могут быть использованы при решении задач, требующих применения математических сведений, изученных в прошлом;
б) помогут найти результаты некоторых вычислений (длин окружностей, площадей кругов, значение корней и т.д.), что сэкономит время;
в) используя помещённые в справочнике формулы тригонометрических функций двойного и половинного аргумента, можно предложить учащимся восстановить их доказательство, преследуя при этом две цели: запоминание формул и установление связей и зависимостей тригонометрических тождеств;
г) можно использовать для знакомства с некоторыми сведениями из математики, не включёнными в программу (тождественные преобразования произведений синусов, косинусов).
Кроме справочников можно отметить сборники конкурсных задач, олимпиадные задачники.
Т.о. методические функции наглядности:
1) познавательная: цель – формирование познавательного образа изучаемого объекта, предоставление учащимся кратчайшего и доступного пути осмысления изучаемого материала (монотонность функции, локальный экстремум связывают с углом наклона касательной и знаком производной);
2) функция управления деятельностью: участие в ориентировочных, контрольных и коммуникационных действиях. Ориентировочные – построение чертежа; контролирующие – обнаружение ошибок при сравнении выполненного учащимися чертежом с выполненным в учебнике; коммуникационные – на стадии исследования полученных результатов, когда ученик объясняет по построенной модели суть изучаемого явления или факта;
3) интерпретационные функции: рассмотрение каждой из возможных моделей фигуры (аналитической или геометрической), которой в определённых случаях может служить наглядностью (например, окружность можно задать с помощью пары (центр и радиус), уравнением осей координат, с помощью рисунка или чертежа и в задачах на построение наглядным будет первое, в описании геометрического места точек – второе, в геометрических задачах - третье);
4) эстетические функции наглядности и опосредованные методические функции: обеспечение целенаправленного внимания учащегося, запоминания при повторении учащимся учебного материала, использование прикладной направленности.
1. К.О. Ананченко “Общая методика преподавания математики в школе”, Мн., “Унiверсiтэцкае”, 1997г.
2. Рогановский Н.М. Методика преподавания в средней школе Мн., Выш. школа, 1990г.
... Оно и определило формулировку проблемы: каковы условия продуктивного формирования УД младших школьников при обучении математике с применением персональных компьютеров? Целью исследования является выявление особенностей формирования учебной деятельности младших школьников при обучении математике с применением ПК. Объектом исследования выступает методическая система обучения младших школьников ...
... в психологии. Воспитательные аспекты обучения математике раскрываются в соответствии с концепциями развития личности, которые разработаны в психологии и педагогике. Можно говорить о том, что методика обучения математике как научная область должна иметь такую же структуру, как и любая другая наука, т.е. она должна состоять из отдельных научных теорий. Каждая из них имеет один и тот же объект — ...
... схемы, т. е. могут быть описаны математическим языком, то эвристическая деятельность на современном этапе развития науки не имеет своего математического выражения. Начало применения эвристического метода как метода обучения - математике можно найти еще в книге известного французского педагога - математика Лезана "Развитие математической инициативы". В этой книге эвристический метод не имеет еще ...
... a1 * b1 = a(1 + 0.2) * b(1 – 0.2) = ab – 0.04ab. Таким образом, площадь прямоугольника уменьшится в этом случае на 4%. Однако следует помнить, что широкое применение аналогии в процессе обучения математике является одним из эффективных приемов, способных пробудить у учащихся живой интерес к предмету, приобщить их к тому виду деятельности, который называют исследовательским. Кроме того, широкое ...
0 комментариев