2. Способность к свёртыванию мыслительных операций.
В процессе мышления нужен последовательный переход от одного звена в цепи рассуждений к другому. Порой из-за этого не удается мысленным взором охватить всю картину целиком, все рассуждение от первого до последнего шага. Однако человек обладает способностью к свертыванию длинной цепи рассуждений и замене их одной обобщающей операцией.
3. Способность к переносу. Весьма существенна способность применить навык, приобретенный при решении одной задачи, к решению другой, т.е. умение отделить специфический аспект проблемы от неспецифического, переносимого в другие области. Это, по сути, способность к выработке обобщающих стратегий. По словам польского математика Стефана Банаха (1892-1945), "математик - это тот, кто умеет находить аналогии между утверждениями; лучший математик тот, кто устанавливает аналогии доказательств; более сильный математик тот, кто замечает аналогии теорий; но можно представить себе и такого, кто между аналогиями видит аналогии". Поиски аналогий - это и есть выработка обобщающей стратегии, необходимое условие переноса навыка или идеи.
4. Боковое мышление. Широко распределенное внимание повышает шансы на решение проблемы. Французский психолог Сурье писал: "Чтобы творить - надо думать около". По аналогии с боковым зрением врач де Боно назвал боковым мышлением эту способность увидеть путь к решению, используя "постороннюю" информацию.
5. Цельность восприятия. Этим термином обозначается способность воспринимать действительность целиком, не дробя ее (в отличие от восприятия информации мелкими независимыми "порциями").
6. Готовность памяти - способность памяти "выдать" нужную информацию в нужную минуту. Это - одно из важных условий продуктивного мышления.
7. Сближение понятий. Следующее слагаемое творческой одаренности - легкость ассоциирования и отдаленность ассоциируемых понятий, "смысловое расстояние" между ними. Эта способность проявляется, например, в "синтезе" острот.
Еще А.С. Пушкин отметил, что именно в остроумии отчетливо прослеживается "сближение понятии": "Остроумием называем мы не шуточки, столь любезные нашим веселым критикам, но способность сближать понятия и выводить из них новые и правильные заключения".
8. Гибкость мышления. Гибкость мышления означает способность быстро и легко переходить от одного класса явлений к другому, далекому от первого по содержанию. Отсутствие такой гибкости называют инертностью, ригидностью, окостенелостью и даже "застреванием" или "застойностью" мышления.
9. Гибкость интеллекта. Существует также гибкость как способность вовремя отказаться от скомпрометированной гипотезы. Нужно подчеркнуть здесь слово "вовремя". Если слишком долго упорствовать, исходя из заманчивой, но ложной идеи, будет упущено время. А слишком ранний отказ от гипотезы может привести к тому, что будет упущена возможность решения.
10. Способность к оценочным действиям. Чрезвычайно важна способность к оценке, к выбору одной из многих альтернатив до ее проверки. Оценочные действия проводятся не только по завершении работы, но и многократно по ходу ее; они служат вехами на пути творческих исканий, отделяющими различные этапы и стадии творческого процесса. На независимость оценочных способностей от других типов способностей первыми, кажется, обратили внимание шахматные мастера.
11. Способность к "сцеплению". Этим словом обозначается способность индивида объединять воспринимаемые раздражители, а также быстро увязывать новые сведения с прежним личностным опытом, без чего воспринимаемая информация не превращается в знание, не становится частью интеллекта.
12. Лёгкость генерирования идей. Еще одна составляющая творческой одаренности - легкость генерирования идей. Причем не обязательно, чтобы каждая идея была правильной. "Можно считать аксиомой тот факт, - писал в 1953 году американский физик А. Осборн, - что количество идей переходит в качество. Логика и математика подтверждают, что, чем больше идей порождает человек, тем больше шансов, что среди них будут хорошие идеи. Причем лучшие идеи приходят в голову не сразу".
13. Беглость речи. Легкость формулирования необходима, чтобы облечь новую идею в слова. Ее можно выразить и другим кодом, например, аналитически (формулой) или графиком, но словесно-речевой код - самый универсальный. (Бойкость речи иногда ошибочно принимают за легкость генерирования идей)
14. Способность к доведению до конца. Здесь имеется в виду не просто настойчивость, собранность и волевой настрой на завершение начатого, а именно способность к доработке деталей, к "доведению", к совершенствованию первоначального замысла.
Едва ли нужно объяснять, насколько важна эта способность, позволяющая довести работу до такого уровня, когда она приобретает универсальную значимость и общественную ценность. Один только замысел, каков бы ни был его размах, социального признания, как правило, не получает. "Во всяком практическом деле идея составляет от 2 до 5%, а остальные 98-95% - это исполнение", - любил повторять академик А.Н. Крылов.
Насколько существенны детали в любой работе - об этом писал Микеланджело: "Мелочи создают совершенство, но совершенство - по мелочь".
Таким образом, перечисленные слагаемые творческой одаренности, по сути, не отличаются от обычных мыслительных способностей.
Понятия "мышление" и "творчество" зачастую противопоставляют. Но такая позиция приводит к грубой методологической ошибке, заставляя признать, что для "творческих личностей" должны быть особые психологические законы. На самом же деле элементарные способности человеческого ума одинаковы у всех. Они только по-разному выражены (сильнее или слабее) и по-разному сочетаются между собой.
Например, сочетание зоркости в поисках проблем, гибкости интеллекта, легкости генерирования идей и способности к отдаленному ассоциированию проявляет себя как нестандартность мышления, которую издавна считают непременной составной частью таланта.
1.4 Различные подходы к определению творческих способностейВ современной психологической науке выделяют три основных подхода к определению творческих способностей.
1. Как таковых творческих способностей нет. Интеллектуальная одаренность выступает в качестве необходимого, но недостаточного условия творческой активности личности. Главную роль в детерминации творческого поведения играют мотивы, ценности, личностные черты (А. Танненбаум, А. Олох, Д.Б. Богоявленская, А. Маслоу и другие). К числу основных черт творческой личности эти исследователи относят когнитивную одаренность, чувствительность к проблемам, независимость в неопределенных и сложных ситуациях.
Особняком стоит концепция Д.Б. Богоявленской, которая вводит понятие креативной активности личности, полагая, что она обусловлена определенной психической структурой, присущей креативному типу личности. Творчество, с точки зрения Богоявленской, является ситуативно нестимулированной активностью, проявляющейся в стремлении выйти за пределы заданной проблемы. Креативный тип личности присущ всем новаторам, независимо от рода деятельности: летчикам-испытателям, художникам, музыкантам, изобретателям.
2. Творческая способность (креативность) является самостоятельным фактором, независимым от интеллекта (Дж. Гилфорд, К. Тейлор, Г. Грубер, Я.А. Пономарев). В более "мягком" варианте эта теория гласит, что между уровнем интеллекта и уровнем креативности есть незначительная корреляция.
Наиболее развитой концепцией является "теория интеллектуального порога" Э.П. Торренса: если IQ, ниже 115-120, интеллект и креативность образуют единый фактор, при IQ выше 120 творческая способность становится независимой величиной, то есть нет креативов с низким интеллектом, но есть интеллектуалы с низкой креативностью.
Предположение Торренса на удивление хорошо соответствует данным Д. Перкинса, согласно которым для каждой профессии существует нижний допустимый уровень развития интеллекта. Люди с IQ ниже определенного уровня не могут овладеть данной профессией, но если IQ выше этого уровня, то прямой связи между интеллектом и уровнем достижений нет. Главную роль в определении успешности работы играют личностные ценности и черты характера.
3. Высокий уровень развития интеллекта предполагает высокий уровень творческих способностей и наоборот. Творческого процесса как специфической формы психической активности нет. Эту точку зрения разделяли и разделяют практически все специалисты в области интеллекта (Д. Векслер, Р. Уайсберг, Г. Айзенк, Л. Термен, Р. Стернберг и другие).
Эмпирическое изучение творческого мышления в современной психологии проводится с использованием следующих методов.
1. Анализ процесса решения так называемых малых творческих задач, или задач на смекалку, требующих, как правило, переформулирования задачи или выхода за пределы тех ограничений, которые субъект сам на себя накладывает.
2. Использование наводящих задач. В этом случае изучается чувствительность человека к подсказке, содержащейся в наводящей задаче, которая решается легче, чем основная, но построена по тому же принципу и поэтому может помочь в решении основной.
3. Использование "многослойных" задач. Испытуемому дается целая серия однотипных задач, имеющих достаточно простые решения. Не очень творческий человек будет просто решать такие задачи, каждый раз заново находя решения. Творческий человек проявит "интеллектуальную инициативу" и попытается открыть более общую закономерность, лежащую в основе каждого отдельного решения.
4. Методы экспертных оценок для определения творчески работающих людей в той или иной области науки, искусства или практической деятельности.
5. Анализ продуктов деятельности для определения степени новизны и оригинальности.
6. Некоторые шкалы личностных опросников и проективных тестов могут давать информацию о выраженности творческого начала в мышлении человека.
7. Специальные тесты креативности, основанные на решении задач так называемого открытого типа, т.е. таких, которые не имеют какого-то одного правильного решения и допускают неограниченное число решений.
Как уже говорилось ранее, прямое обучение творчеству невозможно, но вполне реально косвенное влияние на него за счет создания условий, стимулирующих или тормозящих творческую деятельность. Условия или факторы, влияющие на течение творческой деятельности бывают двух видов: ситуативные и личностные. К последним относятся устойчивые свойства, черты личности или характера человека, которые могут влиять на состояния, вызванные той или иной ситуацией)
На современном этапе качественное математическое образование школьников сложно представить без системы дополнительных образовательных услуг. Помимо факультативных курсов, кружковых занятий, предметных вечеров, олимпиад, викторин и т.д., система дополнительного математического образования должна включать в себя работу над созданием школьной математической печати. Основной объем информации по предмету учащиеся получают из учебников и учебных пособий, что не всегда эффективно стимулирует интерес школьников к математике. Многие учителя пытаются решить эту проблему, оформляя стенды, выпуская совместно с учащимися стенгазеты. Но и эта работа стремительно "сходит на нет" по ряду объективных причин, связанных с отношением государства к учительскому труду. Поэтому данная работа должна перейти из принудительной обязанности учителя-предметника в сферу дополнительного математического образования. В этой главе мы пытаемся раскрыть наши представления о школьной математической печати, ее организации и эффективном применении.
2.1 Виды, структура и возможности школьной математической печати (ШМП)ШМП, выступая одной из форм деятельности в сфере дополнительного математического образования, дает педагогу возможность прививать интерес учащихся к математике, развивать творческие способности учащихся.
На наш взгляд, можно выделить несколько основных видов математической печати, которые используются в современной школе: математические газета и стенгазета, математический стенд, журнал математического кружка. Кроме того, используются также и другие формы математической печати, такие как: "Уголок математики" в общешкольной или классной стенгазете, математическая фотогазета, монтажи фотографий и рисунков, математические альбомы.
Далее остановимся подробнее на математической газете, как на одной из более распространенных форм ШМП.
2.2 Организация и содержание математической газеты 2.2.1 Организация газетыПоставив своей целью создать математическую газету, педагог должен прежде всего ориентироваться на интересы школьников. Школьникам, выпускающим газету, эта работа приносит большую пользу. Им приходится подбирать материалы для газеты, и для этого они знакомятся с различными книгами, выбирают из них нужный материал, отбирают самое главное, литературно обрабатывают отобранное. Все это благотворно сказывается на расширении кругозора учащихся, на их навыках чтения математической литературы, на их речи и грамотности. Поставив перед собой столь благородную цель, педагог первоначально должен определиться с некоторыми важными вопросами: состав редколлегии, цели, задачи, принципы газеты, вопросы финансирования.
2.2.2 Название газетыУже само название газеты должно привлечь к ней внимание учащихся. Поэтому лучше не давать газете название "Юный математик", ставшее шаблонным. Можно привести ряд примеров, когда школьники сами удачно подбирали названия для своих газет. Вот несколько таких названий: "Давайте поспорим", "Алтригар" (Расшифровывается как Алгебра - тригонометрия - геометрия - арифметика), "Арксинус", "Архимед", "Октант" и др.
Обычно выделяется постоянная редколлегия (редактор, секретарь, художник и др.), которая собирает (увы с большим трудом!) заметки у членов кружка и более или менее регулярно выпускает газету. Опыт показал, что это не единственная и, пожалуй, не лучшая форма организации выпуска математических газет. В некоторых кружках нет постоянной редколлегии. Члены кружка разбиваются по группам (скажем, по классам), и каждая из групп выпускает свой номер газеты. Например 1-ый номер выпускает 9-а класс, 2-ой номер - 9-б класс и т.д. Это вызывает соревновательный эффект, каждая группа отстаивает честь своего класса и старается выпустить газету лучше, чем другая группа. Так как каждая группа выпускает газету сравнительно редко, то эта работа привлекает учащихся своей новизной и не приедается им. Для окончательной проверки качества выпускаемой газеты иногда выделяется один из членов бюро кружка. Выпускать газету нужно регулярно, не реже одного раза в два месяца.
2.2.4 Основные принципы газетыНа наш взгляд качественный выпуск газеты возможен, если сформированы и поддерживаются на протяжении всего времени выпуска некоторые принципы газеты. Выделим некоторые из них.
1. Регулярность. На наш взгляд - это один из важнейших принципов газеты. Заданные наперед сроки выпуска очередного номера газеты обеспечивают интерес школьников, которые ждут его с нетерпением. Так же это будет "подстегивать" редколлегию к заблоговременному поиску, сбору и обсуждению, а в конечном итоге к созданию очередного номера математической газеты.
2. Массовость. Во-первых, этот принцип обеспечивает вовлечение основной массы школьников в математическую жизнь школы, интерес к интеллектуальному творческому труду, во-вторых, еще большую заинтересованность ребят, работающих над созданием газеты, ведь результаты их труда увидит вся школа.
3. Привлекательность. Газета должна привлекать внимание, заинтересовывать ребят, читающих ее. Если газета сделана неопрятно, не творчески, материал подобран не качественно, оформлена она не красиво, то, естественно, никакого интереса при ее чтении у основной массы школьников не появится и цели, поставленные педагогом достигнуты не будут. Поэтому при создании газеты очень важно художественное творчество школьников, которое нужно приветствовать и всячески поощрять.
4. Демократичность. К публикациям в газете должны быть допущены все желающие, газета должна быть демократичной. Этот принцип должен обеспечить больший объем материалов для публикации и вовлечение основной массы школьников в жизнь кружка, газеты, а в конечном итоге - в математическую жизнь школы. Материалы для очередного номера газеты может отбирать главный редактор (педагог), но лучше, если это будет происходить в ходе обсуждения и, если понадобится, голосования среди членов ред. коллегии.
2.2.5 Некоторые вопросы маркетингаРекламировать выход очередного номера школьной математической газеты нужно ненавязчиво, но повсеместно: несколько слов на уроке или кружке, реклама на стенде, и вот об этом событии уже все знают и ждут его с нетерпением.
Для привития интереса к газете рекомендуется печатать в ней статьи не только твердой математической направленности, но и косвенной: интервью с интересными школьниками (например, рубрика ЖЗШ: жизнь замечательных школьников), репортажи и статьи о жизни родной школы и других школ, фантазийное творчество школьников может проявиться при обдумывании и описании каких-либо фантастических тем (например, "Планета Земля без силы тяжести").
Рекомендуется наладить обратную связь с читателями, например, через "Опросные листы" с помощью которых можно получить ответы на следующие вопросы: "Какие рубрики вам больше всего понравились?", "Какие конкретные предложения вы могли бы внести в создание школьной математической газеты?", "Что, по вашему мнению, лишнее в газете?" и др. На основании "Опросных листов" можно составить рейтинг рубрик и поощрить лучших авторов. Закреплять рубрики за конкретными авторами не рекомендуется.
2.2.6 Содержание номеров: разделы газеты, рубрики
Содержание газеты должно быть разнообразным, в противном случае она скоро надоест учащимся. Укажем на ряд важных разделов, которые желательно иметь в газетах. Название этих разделов можно не указывать в газете.
1. Математическая жизнь в нашей школе (наш кружок, недостатки в его работе, что было на заседании кружка, о математическом вечере предшествующем или предстоящем, связь с другими кружками и др.).
2. Математическая жизнь в нашей стране (математические олимпиады и турниры, достижения школьников, выдающиеся математики и их открытия и др.).
3. Краткое изложение некоторых математических вопросов. Больших вкладок и крупных доказательств теорем нужно избегать. Но следует делать ссылки на литературу, где доказательства можно найти. Можно в нескольких номерах газеты помещать целую серию заметок (по одной заметке из серии в каждом номере), связанных общностью темы, например: "Тайны натурального ряда" (решенные и нерешенные задачи теории чисел, например: "Проблема Гольдбаха", "Загадки простых чисел" и др.).
4. Биографии выдающихся математиков (основные даты, один - два ярких эпизода, фото).
5. Заметки по истории математики небиографического характера: например, как люди научились считать", "Как умножали в старину".
6. Краткие сообщения ряда интересных фактов по математике и ее истории (помещается под общим заголовком "Знаешь ли ты, что …). Лучше, чтобы эти сообщения были связаны общностью темы, например: "Счетная техника", "Русская математика".
7." Наш словарь". В живой форме объясняется смысл и происхождение какого либо математического термина.
8. "Наш календарь". Очень краткое (одна - две фразы) сообщение по истории математики.
9. "Геометрические иллюзии".
10. Занимательные задачи, софизмы, парадоксы, арифметические ребусы; задачи, предлагавшиеся на различных олимпиадах, конкурсах (с указанием, где и когда они были предложены). Обычно они помещаются под заголовком: "Подумай", "Как это могло случиться?", "Уголок профессора Головоломки" и др.
11. "Математические стихотворения" о математике и математиках.
12. "Математический юмор" Можно использовать забавные случаи, имевшие место на заседаниях кружка или на уроках математики.
Название рубрик, как и название самой математической газеты должно быть интересным, привлекать внимание. Например: "А знаешь ли ты, что…", "Из-за угла", "Треугольный диван", "Большой репортаж", ЖЗШ (жизнь замечательных школьников), "Размышляйка", "Лаборатория околоматематических наук", "Ты - гений", "Говори правильно" и др.
... но все они сходятся в одном, что игра является способом развития личности, обогащения ее жизненного опыта. - Из всего многообразия игр можно выделить математическую игру, как средство развития познавательного интереса учащихся к математике. Использование математической игры во внеклассной работе по математике наиболее эффективно способствует возникновению интереса у учащихся к математике. - ...
... , глубокое изучение исследуемой темы, не следует ограничивать его ни в чем, а это требует гибкости в использовании времени и средств [20;97-100]. Из опыта Жуковой Т.М. по развитию творческих способностей на уроках русского языка и литературы - «Многие считают, что учить творчеству нельзя, что способность к творчеству — это врожденное качество, присущее лишь немногим. Действительно, спонтанному ...
... самостоятельно повышать квалификацию в области математического моделирования и использования программных средств и информационных технологий. Изучение структуры, содержания и особенностей умений творческой деятельности позволило построить формальную модель процесса их формирования у будущего учителя информатики. Этот процесс может быть представлен в виде стохастической динамической системы, ...
... , частные школы. Обогащение: это миникурсы, кружки, факультативы, разработка индивидуальных программ. Мною была сформулирована тема работы: развитие творческих способностей одаренных детей в системе начального образования Согласно гипотезе исследования если: -подготовить и разработать индивидуальную программу развития речи и литературного творчества одарённых детей -активно ...
0 комментариев