Расчёт противорадиационного укрытия на предприятии АПК

12709
знаков
7
таблиц
0
изображений

Министерство сельского хозяйства Российской Федерации

ФГУ ВПО

Тюменская государственная сельскохозяйственная академия

Механико-технологический институт

Кафедра: "Безопасности жизнедеятельности"

Расчетно-графическая работа

на тему:

"Расчёт противорадиационного укрытия на предприятии АПК"

Выполнил: студент гр.

Проверил:

Тюмень, 2009


Содержание

Введение

Задача 1

Задача 2

Задача 3

Задача 4

Задача 5

1. Расчёт коэффициента защищённости противорадиационного укрытия

2. Дополнительные расчёты коэффициента защищённости противорадиационного укрытия

Литература


Введение

Защита населения от современных средств поражения - главная задача гражданской обороны.

Укрытие в защитных сооружениях обеспечивает различную степень защиты от поражающих факторов ядерного, химического и биологического оружия, а также от вторичных поражающих факторов при ядерных взрывах и применении обычных средств поражения (от разлетающихся с большой силой и скоростью обломков и осколков конструкций сооружений, комьев грунта и т.д.). Этот способ, обеспечивая надежную защиту, вместе с тем практически исключает в период укрытия производственную деятельность. Применяется при непосредственной угрозе применения ОМП и при внезапном нападении противника.

Противорадиационные укрытия (ПРУ). Они обеспечивают защиту укрываемых от воздействия ионизирующих излучений и радиоактивной пыли, отравляющих веществ, биологических средств в капельно-жидком виде и от светового излучения ядерного взрыва. При соответствующей прочности конструкций ПРУ могут частично защищать людей от воздействия ударной волны и обломков разрушающихся зданий. ПРУ должны обеспечивать возможность непрерывного пребывания в них людей в течение не менее двух суток.

Защитные свойства ПРУ от радиоактивных излучений оцениваются коэффициентом защиты (Кз) или коэффициентом ослабления (Косл), который показывает, во сколько раз укрытие ослабляет действие радиации, а следовательно, и дозу облучения.


Задача 1

Рассчитать границы очага ядерного поражения радиусы зон разрушения после воздушного ядерного взрыва мощностью боеприпаса 150 кТ. Построить график и сделать вывод.

Дано:

Q1=150 кТ

Q2=100 кТ

R2п=1,7 км

R=2,6 км

R2ср=3,8 км

R2сл=6,5 км

Решение:

; Rп=; Rc=; Rср=; Rсл=.

Ответ: Rп=1,8 км; Rс=2,8 км; Rср=4,2 км; Rсл=7,2 км.

Rп, Rс, Rср, Rсл - ?

Вывод: после воздушного ядерного взрыва мощностью 150 кТ, зона поражения составила 14,4 км. Радиусы зон разрушения следующие: Rп = 1,8 км; Rс. = 2,8 км; Rср = 4,2 км; Rсл = 7,2 км.

Задача 2

Рассчитать границы очага ядерного поражения и радиусы зон разрушения при наземном ядерном взрыве мощностью боеприпаса 150 кТ. Построить график и сделать вывод.

Дано:

Q1=150 кТ

Q2=100 кТ

R2п=1,9 км

R=2,5 км

R2ср=3,2 км

R2сл=5,3 км

Решение:

; Rп=; Rc=; Rср=; Rсл=.

Ответ: Rп=2,1 км; Rс=2,8 км; Rср=3,5 км; Rсл=5,9 км.

Rп, Rс, Rср, Rсл - ?

Вывод: при наземном ядерном взрыве зона полных разрушений больше чем при воздушном ядерном взрыве на 0,6 км. А общая зона поражения меньше на 2,6 км.

Задача 3

 

Рассчитать величину спада уровня радиации через 2, 6, 12, 24, 48 часов после аварии на АЭС и после ядерного взрыва, если начальный уровень радиации через 1 час составит Р0=150 Р/ч. Построить график и сделать вывод.

Дано:

Р0=150 Р/ч

t=2, 6, 12, 24, 48 ч

Решение:

Рt=, степень 1,2 применяется при расчетах спадов уровня радиации после ядерного взрыва, 0,5 - после аварии на АЭС.

После аварии на АЭС

Рt2=; Рt6=; Рt12=; Рt24=; Рt48=

После ядерного взрыва:

Рt2=; Рt6=; Рt12=; Рt24=; Рt48=;

Ответ:

1) Рt2=106,38 Р/ч; Рt6=61,47 Р/ч; Рt12=43,35 Р/ч; Рt24=30,67 Р/ч; Рt48=21,67 Р/ч;

2) Рt2=65,50 Р/ч; Рt6=17,48 Р/ч; Рt12=7,60 Р/ч; Рt24=3,63 Р/ч; Рt48=1,44 Р/ч.

Рt - ?

 

Вывод: спад уровня радиации при ядерном взрыве происходит быстрее чем при аварии на АЭС.

Задача 4

Рассчитать эквивалентную дозу облучения, полученную людьми, находящимися на зараженной радиационными веществами местности в течение 6 часов. Если начальный уровень радиации через 1 час после аварии на АЭС составил Р0=150 мР/.

Дано:

Р0=150 мР/ч

t=6 ч

α=25%

β=25%

γ=25%

η=25%

Решение:

; ;

; Dэкс=0,877 · Dпогл;

 Рад;

Dэкв = Q∆·Dпогл.

Q - коэффициент качества или относительный биологический эквивалент, показывает во сколько раз данный вид излучения превосходит рентгеновское по биологическому воздействию при одинаковой величине поглощенной дозы, для α - излучения Q=20, β и γ - излучения Q=1, η - излучения Q=5-10.

Dэкв = 20 · 723,38 · 0,25 + 1 · 723.38∙0,25+1∙723,38∙0,25+ +5∙723,38 ∙0,25=4882,8 мБэр = 0,0048 Зв.

Ответ: Dэкв =0,0048 Зв.

Dэкв - ?

Вывод: Люди, находящиеся на зараженной радиацией территории после аварии на АЭС в течение 6 часов получат эквивалентную дозу 0,0048 Зв. Данная доза не представляет опасность для возникновения лучевой болезни.


Задача 5

Рассчитать эквивалентную дозу облучения, полученную людьми, находящимися на зараженной радиационными веществами местности в течение 6 часов. Если начальный уровень радиации через 1 час после ядерного взрыва составил Р0=150 мР/.

Дано:

Р0=150 мР/ч

t=6 ч

α=25%

β=25%

γ=25%

η=25%

Решение:

; ;

; Dэкс=0,877 · Dпогл;

 Рад;

Dэкв = Q∆·Dпогл.

Dэкв = 20 · 572,90 · 0,25 + 1 · 572,90 ∙ 0,25+1 ∙ 572,90 ∙ 0,25+

 +5 ∙ 572,90 ∙ 0,25=3867,07 мБэр = 0,0038 Зв.

Ответ: Dэкв =0,0038 Зв.

Dэкв - ?

Вывод: Люди, находящиеся на зараженной радиацией территории после ядерного взрыва в течение 6 часов получат эквивалентную дозу 0,0038 Зв. Данная доза не представляет опасность для возникновения лучевой болезни.

Исходные данные для расчёта противорадиационной защиты.

1. Место нахождения ПРУ - в одноэтажном здании;

2. Материал стен - Ко (из каменных материалов и кирпич);

3. Толщина стен по сечениям:

А - А - 25 см;

Б - Б - 12 см;

В - В - 12 см;

Г - Г - 25 см;

1 - 1 - 25 см;

2 - 2 - 12 см;

3 - 3 - 25 см.

4. Перекрытие: тяжёлый бетон, дощатый по лагам толщиной 10 см, вес конструкции - 240 кгс/м2;

5. Расположение низа оконных проёмов 2,0 м;

6. Площадь оконных и дверных проёмов против углов (м2)

α1 = 8/2,α2 = 15/4/2,α3 = 7,α4 = 6;

7. Высота помещения 2,9 м;

8. Размер помещения 4×6м;

9. Размер здания 12×20 м;

10. Ширина заражённого участка, примыкающего к зданию 20 м.


1. Расчёт коэффициента защищённости противорадиационного укрытия

Предварительные расчёты таблица №1.

Сечение здания

Вес 1 м2 конструкции

Кгс/м2

1-Lст стен

Приведённый вес Gпр кгс/м2

Суммарный вес против углов Gα, Кгс/м2

А - А

Б - Б

В - В

Г - Г

1 - 1

2 - 2;

3 - 3

450

216

216

450

450

216

450

0,134

0,258

0,068

0,034

0,020

0,221

0,057

0,866

0,742

0,932

0,966

0,861

0,781

0,943

389,7

160,2

201,3

434,7

360,00

168,4

424,3

4 = 389,7

2 = 796,28

3 = 360,00

1 = 592,83

1. Материал стен - Ко (из каменных материалов и кирпича).

2. Толщина стен по сечению (см):

А - А - 25;

Б - Б - 12;

В - В - 12;

Г - Г - 25;

1 - 1 - 25;

2 - 2 -12;

3 - 3 - 25.

3. Определяем вес 1 м2 конструкций для сечений (кгс/м2). Таблица №1.

А - А - 450;

Б - Б - 216;

В - В - 216;

Г - Г - 450;

1 - 1 - 450;

2 - 2 - 216;

3 - 3 - 450.

4. Площадь оконных и дверных проёмов против углов (м2).

α1 = 8/2;

α2 = 15/4/2;

α3 = 7;

α4 = 6.

5. Высота помещения 2,9 м2.


Информация о работе «Расчёт противорадиационного укрытия на предприятии АПК»
Раздел: Безопасность жизнедеятельности
Количество знаков с пробелами: 12709
Количество таблиц: 7
Количество изображений: 0

Похожие работы

Скачать
65762
2
0

...  – плотность АХОВ;  – высота столба испарения разлившегося АХОВ.  ч , при  ,  т. На втором этапе расчётов проводится определение глубины, ширины и площади зоны химического заражения. Расчет глубин зон заражения первичным (вторичным) облаком АХОВ при авариях на технологических емкостях, хранилищах и транспорте ведется с помощью таблиц. В таблицах приведены максимальные значения глубин зон ...

0 комментариев


Наверх