3. При однополюсном прикосновении к двухпроводной сети величина тока, проходящего через человека,

 (3.4.4)

где, Rn – сопротивление изоляции пола, Ом;

Rоб – сопротивление изоляции обуви, Ом.

4. При однофазном (однополюсном) прикосновении в сети с глухозаземленной нейтралью через тело человека пройдет ток.

 (3.4.5)

где, Rо - сопротивление заземления нейтрали, Ом

Сопротивление заземления нейтрали ничтожно мало и им можно пренебречь

Rо = 0, поэтому,

 (3.4.6)

т.к. Uф меньше Uл в , то величина тока поражения будет значительно меньше, чем при двухфазном включении и зависит от величины сопротивления пола и обуви.

5. При однофазном включении человека в трехфазную сеть с изолированной нейтралью величина тока, проходящего через человека, будет меньше, чем при аналогичном включении в сети с глухозаземленной нейтралью (при исправной сети). Это связано с тем, что добавляется сопротивление изоляции (RA; RB; RC) и емкости (СA; СB; СC) фаз.

Если пренебречь емкостным сопротивлением, т.е. СA = СB = СC = 0, то

 (3.4.7)

где, Ru – сопротивление изоляции одной фазы, Ом, RU = RA = RB = RC

а при Rn = Rоб = 0

 (3.4.7)

В случае заземления нейтрали через человека пройдет меньший ток, т.к. сила тока существенно зависит от состояния изоляции, подбора полов в помещениях, где установлена электроаппаратура, спецобуви и так далее. Например, сухие полы имеют сопротивление до 1 *106 Ом•м.

Не учтение влияния сопротивления пола помещения и обуви может привести к несчастному случаю.

Из сравнения приведенных выше формул видно, что ток, проходящий через человека, при условиях, соответствующих формулам (3.4.3. и (3.4.4), будет меньше, так как при однофазном включении ток не проходит через жизненно важные органы.

Выше рассмотрены условия поражения человека при нормальной работе электросети. В случае аварийных режимов (замыкания корпуса или одной из фаз на землю) ток, которой проходит через тело человека при соприкосновении с исправной фазой определяется

 (3.4.9)

где, Rк – сопротивление короткого замыкания, Ом

Rк - весьма мало и им можно пренебречь, тогда ток поражения

 (3.4.10)

т.е. ток поражения равен, практически току поражения при двухфазном включении в электрическую цепь, что очень опасно для человека.

В сетях с глухозаземленной нейтралью срабатывает защита при возникновении короткого замыкания .

Поэтому, можно сделать следующие выводы:

в условиях малой протяженности сети и сохранения постоянного высокого сопротивления изоляции, малой вероятности замыкания на землю (при наличии автоматического контроля изоляции на землю) - сети с изолированной нейтралью менее опасны, чем с глухозаземленной;

в условиях разветвленной сети с глухозаземленной нейтралью большой протяженности, когда нет возможности поддерживать постоянно высокий уровень изоляции сети, а при большом количестве потребителей не исключено возникновение замыкания на корпус - сети с глухозаземленной нейтралью имеют преимущество, заключающееся в отсутствии влияния сопротивления сети относительно земли (активного емкостного) на ток поражения и автоматическом отключении участка с поврежденной изоляцией при замыкании на корпус.


Опасность при замыкании тоководов на землю

Замыканием на землю называется соприкосновение тоководов или частей электроустановок, которые находятся под напряжением с землей (обрыв тоководов, повреждение изоляции электроустановок и т.д.)

В месте контакта токовода (заземления) происходит растекание тока, по поверхности, что создает на поверхности потенциалы различной плотности. Величина потенциала и характер растекания тока на поверхности земли зависит от формы заземлителя, однородности и электропроводности грунта и силы тока. На рис 3.4.5 показано растекание тока в однофазном изотропном грунте через полусферический одиночный заземлитель. Вследствие однородности грунта, изотропный ток растекается равномерно по поверхности. Плотность тока δ в точке А на поверхности грунта на расстоянии х от заземлителя определяется как отношение тока заземления на землю к площади поверхности полусферы радиуса х

 (3.4.11)

Данная поверхность является эквипотенциальной поверхностью.

Потенциал точки А равен суммарному падению напряжения от точки А до земли (бесконечно удаленной точки с нулевым потенциалом)

 (3.4.12)

Согласно закона Ома напряженность электрического поля в точке А равна:

 (3.4.13)

где, - удельное сопротивление грунта, Ом.м.

После подстановки данного значения получим:

 (3.4.14)

Как видно из зависимости (3.4.14), изменение потенциала точек грунта подчиняется гиперболическому закону (3.4.13).

Человек, попадая в зону растекания тока и соприкасаясь при этом с токопроводящими частями, оказывается под напряжением прикосновения.

При прохождении человека через зону растекания он подвергается воздействию шагового напряжения.

Напряжение прикосновения. При нахождении человека в зоне растекания (в радиусе 20м, за указанным расстоянием электрический потенциал, практически, равен нулю) и при прикосновении к заземленным корпусам электрооборудования, которые находятся под напряжением, возникает напряжение прикосновения, равное разнице потенциалов точек контакта (между руками  и ногами)

 (3.4.15)

При прикосновении рукой с заземленным корпусом потенциал руки равен потенциалу данного корпуса или напряжению замыкания:

 (3.4.16)

Ноги человека при нахождении в точке А имеют потенциал:

 (3.4.17)

Чем далее удалены ноги человека от места замыкания, тем выше напряжение прикосновения.

В общем, виде напряжение прикосновения равно:

 (3.4.18)

где,  - коэффициент напряжения прикосновения, который зависит от формы заземлителя и расстояния от него (табличные данные)

Напряжением шага называется разность потенциалов точек земли, отстоящих друг от друга на расстоянии шага человека. Следовательно, человек, не касаясь каких-либо частей электроустановок, может оказаться под напряжением, и ток при этом идет от одной ноги человека к другой. Это происходит потому, что удаленные на разные расстояния от провода точки почвы касаются одновременно ног человека и имеют разные потенциалы (рис. 3.4.5):

;  (3.4.19)

Тогда напряжение шага

где  — удельное сопротивление, Ом • см; х — расстояние от провода до одной ноги, м; а — шаг человека, м.

Рис 3.4.5 Растекание элетрического потенциала на грунте при коротком замыкании токовода на землю

Шаг человека обычно принимается 0,8 м. Анализ формулы (3.4.18) указывает на то, что с удалением от источника тока напряжение шага падает и на расстоянии 20 м практически равно нулю. При больших токах замыкания напряжение шага может достигать значений, опасных для жизни человека. Уменьшить опасность поражения током можно устройством контурного заземления (выравниванием потенциалов). Приближаться к лежащему на земле проводу в радиусе 8 м от места замыкания запрещается. При попадании под напряжение шага человек должен быстро выйти из опасной зоны мелкими шагами, почти не отрывая ног от земли.

Классификация условий работ (помещений) по степени электроопасности

Существует следующая классификация условий работ по степени электробезопасности (ГОСТ 12.-1.013—78);

1. Условия с повышенной опасностью:

- работа в сырых помещениях с влажностью более 75%;

-наличие проводящей пыли;

-наличие токопроводящих оснований (металлических, земляных, железобетонных, кирпичных);

-наличие повышенной температуры (длительно 35° С, кратковременно 40° С).

-не исключено включение человека в электрическую цепь за счет одновременного соприкосновения с электрооборудованием и металлическими корпусами зданий и сооружений

2. Особо опасные условия:

- работа на улице и в очень сырых помещениях с постоянной относительной влажностью, близкой к 100%, со стенами, покрытыми конденсатом;

- наличие агрессивной коррозионной среды (паров и вредных газов);

- наличие одновременно двух или более условий повышенной опасности.

3. Условия без повышенной опасности:

- это работа в сухих помещениях с относительной влажностью не более 75%

- температурой воздуха 5—35° С

- с полами, обладающими большим сопротивлением

- без токопроводящей пыли.


Информация о работе «Причины электротравм. Действие электричества на человека»
Раздел: Безопасность жизнедеятельности
Количество знаков с пробелами: 22324
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
297514
1
0

... механических факторов. Классификация) средства коллективной защиты разделяются на устройства: оградительные, предохранительные, тормозные, автоматического контроля и сигнализации, дистанционного управления и знаки безопасности. 267. Оградительные устройства. Оградительные устройства подразделяются: по конструкции на: кожухи, дверцы, козырьки, планки, барьеры и экраны; по способу ...

Скачать
481815
2
0

... комиссии с участием представителя госнадзора и им выдаются удостоверения.  Повышение рабочими уровня знаний по безопасности труда осуществляется на курсах повышения квалификации, ее сдачей экзаменов. 136. Виды инструктажа, регистрация инструктажа.  Инструктаж работающих подразделяется на:  1. вводный  2. первичный на рабочем месте  3. повторный  4. внеплановый  5. целевой  Все ...

Скачать
35642
0
3

... ОЖОГИ И ЭЛЕКТРОТРАВМА Электрические ожоги вызываются прохождением через ткань электрического тока значительной силы и напряжения, что обусловливает большую глубину тканевых поражений. Электрические ожоги представляют собой частный вид и нередкий компонент электротравмы, под которой понимаются повреждения, вызываемые воздействием на органы и ткани электрического тока большой силы или напряжения (в ...

Скачать
109758
1
0

... значение для организма. Смена природных ритмов (перелет в другой часовой пояс, посменная работа и др.) может рассматриваться как фактор неблагоприятного социогенного экологического воздействия. Комбинированное действие социогенных факторов на здоровье человека может давать различные эффекты. Так, уровень общей заболеваемости детей зависит как от загрязнения атмосферного воздуха оксидом углерода, ...

0 комментариев


Наверх