4. Жизненный путь звезды

Первые попытки проследить жизненный путь звезды были весьма робкими. Применение законов Лейна к гипотезе гравитационного сжатия Гельмгольца — Кельвина уже принесло новый результат: сжимающаяся звезда должна разогреваться (температура изменяется обратно пропорционально радиусу!), пока увеличение плотности не замедлит сжатие настолько, что расход энергии превысит приход. Тогда звезда начнет остывать. Эволюционный путь звезды, таким образом, уже сто лет назад представлялся состоящим из двух ветвей: восходящей и нисходящей. А. Риттер в 1883г. прямо указывал на то, что красные гиганты находятся на восходящей, а красные карлики — на нисходящей ветви эволюции.

Оригинальную гипотезу происхождения звезд путем конденсации из метеорной материи предложил Норман Локиер в своем выступлении 17 ноября 1887г. перед Лондонским королевским обществом. Развивая свою гипотезу дальше, Локиер опирался не только на теоретические выводы Лейна и Риттера, но и на результаты исследований спектров звезд. Схема эволюции звезд по Локиеру выглядит так. В начале жизненного пути находятся красные гиганты типа Антареса (класс М), затем звезда проходит стадии оранжевого гиганта, как Альдебаран (К5), желтого гиганта, как Полярная (Г8), белого гиганта, как, Ценеб (А2) и Ригель (В8). На вершине эволюции находятся самые горячие голубые звезды: γ Парусов и ζ Кормы (класс О). На нисходящей ветви последовательно располагаются бело-голубые звезды, как Ахериар (В5), белые, как Сириус (АО), бело-желтые, как Процион (Е5), желтые, как Солнце (i) и Арктур (К), наконец, красные карлики, как 19 Рыб (N). Дальше звезда угасает и становится темной. Но Локиер, разрабатывая свою схему эволюции звезд, исходил из убеждения, что химические элементы состоят из еще более простых элементарных частиц, которые он называл "протоэлементами". Эти частицы не были едины для всех элементов, как известные ныне протон, нейтрон и электрон, а носили более индивидуализированный характер. Так, водород, по Локиеру, при высокой температуре распадается на "протоводород", который и дает усиленные линии в спектре - с-линии, по классификации мисс Мори. Железо превращается в "протожелезо" и дает линии искрового спектра, и т. д. В действительности "протоводород" оказался ионом гелия, другие усиленные линии оказались принадлежавшими нонам металлов. Но идеи Локкиера, окончательно сформулированные им в 1900 г., спустя 13 лет в несколько ином виде (без метеорной гипотезы и "протоэлементов" были развиты Генри Норрисом Ресселом в его гипотезе эволюции звезд, основанной на диаграмме.

13 июня 1913г. он доложил свою гипотезу на собрании Королевского астрономического общества в Лондоне. Спустя полгода, 30 декабря 1913г., он повторил свой доклад на съезде Американского астрономического общества "Если мы расположим звезды, которые мы изучаем, в порядке возрастания плотности, то мы должны начать с гигантских звезд класса М и затем проследить ряд гигантов в порядке, обратном тому, в каком обычно располагаются спектры, до звезд классов А и В и далее при все еще возрастающей, хотя уже и медленнее, плотности перейти вниз на последовательность карликов в обычном порядке изменения спектральных классов, встретив на пути Солнце, к тем красным звездам (снова в класс М), которые являются самыми слабыми из известных в настоящее время звезд", — так описывал Рессел свою гипотезу.

Первая гипотеза звездной эволюции Рессела получила всеобщее признание. Но ненадолго. Спустя 12 лет сам автор гипотезы приступил к ее пересмотру. И для этого у него было немало оснований. В результате работ Дж. Джинса, А. Эддингтона и самого Г. Н. Рессела стало ясно, что основным источником энергии в звездах является не гравитационное сжатие, а какой то иной механизм, сопровождаемый переходом части вещества в поле излучения.

В 1924г. А. Эддингтон установил очень важное обстоятельство, состоявшее в том, что ионизованный газ в недрах звезды обладает практически неограниченной сжимаемостью. Таким образом, звездное вещество при любых плотностях ведет себя как идеальный газ. Кроме того, почти для всех элементов в недрах звезд, за исключением водорода и гелия, средний молекулярный вес оказался близким к двум. Большое значение имела также разработка в эти годы теории лучистого равновесия (в основном трудами А. Эддингтона) и вывод Г. Крамерсом формулы для коэффициента поглощения излучения звездной материей.

В свете этих открытий охлаждение красных карликов следовало объяснять уже не замедлением сжатия из-за уплотнения вещества в их недрах, а ростом непрозрачности звездной материи по мере этого уплотнения.

Перерабатывая свою гипотезу, Рессел исходил из следующих соображений. Главная последовательность на Г—Р-диаграмме — не узкая линия, а довольно широкая полоса. Между тем, если бы все звезды имели одинаковый химический состав, выход энергии на единицу массы определялся бы только температурой и плотностью звезды. Диаграмму "спектр—светимость" можно преобразовать в другую диаграмму: "температура—плотность", и тогда все звезды главной последовательности легли бы на тонкую линию. Раз этого нет, значит, выход энергии зависит от состава вещества, очевидно, того самого вещества, за счет которого эта энергия вырабатывается. Рессел назвал эту "активную" материю "материей карликов" (поскольку значительную часть звезд главной последовательности составляли карлики).

Но на Г—Р-диаграмме была еще ветвь гигантов, кроме того, в левом нижнем углу диаграммы находилось несколько слабых белых звезд (спутник Сириуса, Эридана В, спутник Проциона), получивших название белых карликов и представлявших некоторое время загадку. При крайне малых размерах они имели массу порядка солнечной, а значит, чудовищную плотность: в десятки и сотни тысяч раз больше плотности воды. Сначала это казалось астрономам необъяснимым, но после открытия Эддингтоном факта неограниченной сжимаемости звездного газа белые карлики перестали быть загадкой.

Рессел предположил, что ветвь гигантов как бы через перекидной мост соединяется на Г—Р-диаграмме с областью белых карликов и так как звезды и здесь не ложатся на узкую линию, то, значит, все дело в том, что и у них выход энергии зависит от содержания некоей активной материи, но иного типа, чем у звезд главной последовательности, — "материи гигантов".

Теперь оставалось задаться предположением о начальной массе звезды и о том, испытывает ли она малые или большие потери массы в ходе эволюции. Весь путь эволюции звезды определяется теперь тремя различными механизмами пополнения энергии:

1) гравитационное сжатие,

2) потребление (т. е. переход в излучение) материи карликов,

З) потребление материи гигантов.

Несмотря на всю сложность второй гипотезы Рессела и на наличие в ней множества белых пятен, оба ее варианта дают два основных истолкования Г—Р-диаграммы:

1) Если звезда почти не теряет массы в ходе эволюции, то густо населенные области на диаграмме соответствуют наиболее устойчивым и длительно существующим состоянием звезд;

2) Если звезда в ходе эволюции теряет массу, основные ветви диаграммы отражают последовательное перемещение звезд вдоль них.

Джемс Джинс подверг вторую гипотезу Рессела резкой критике. Согласно этой гипотезе, переработка активной материи в излучение начинается после достижения веществом звезды некоторой критической температуры (по оценке Рессела, 32 миллиона градусов). Но, указывал Джинс, достигнув этой температуры, звезда на этом не остановится, а будет разогреваться дальше (включится новый мощный источник энергии!). Зона сверхкритической температуры будет расширяться, захватывая все новые и новые порции активной материи. Поэтому интенсивность излучения такой звезды будет усиливаться спонтанно. Джинс сравнивал подобную звезду с бочонком пороха с искрой внутри него. Рессел и Эддингтон предприняли немало усилий для того, чтобы устранить противоречия этой гипотезы. Это им удалось ценой введения ряда совершенно искусственных предположений. Груз этих предположений не хуже, чем устраняемые ими противоречия, тянул гипотезу на дно. Тогда Джинс предпринял общее математическое исследование вопроса о звездной устойчивости и пришел к простому выводу: пустые области на Г—Р-диаграмме соответствуют неустойчивым состояниям звезды. Это был весьма логичный и, в общем, правильный вывод. Но существенно продвинуться дальше Джинсу не удалось. Он считал, что переработка "активной" материи звезды не может зависеть от температуры, как предполагается в гипотезе Рессела, поскольку это противоречило бы основным положениям физики. Основная идея Джинса состояла в том, что:

а) процесс переработки звездного вещества происходит самопроизвольно и не зависит от температуры звезды;

б) центральные области звезды не находятся в чисто газообразном состоянии, поскольку атомы, ядра и электроны сжаты здесь так тесно, что не могут двигаться свободно, и вещество в центральной области обладает свойствами жидкости.


Информация о работе «Мир звезд»
Раздел: Биология
Количество знаков с пробелами: 29174
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
31422
0
0

... , где притяжение Юпитера препятствовало формированию крупной планеты. Основная идея современной планетной космогонии – это то, что планеты и их спутники образовались из холодных твердых тел и частиц. Строение, происхождение и эволюция Вселенной с точки зрения современной науки. Вселенная бесконечна во времени и пространстве. Каждая частичка вселенной имеет свое начало и конец, как во времени, ...

Скачать
55491
0
0

... был «развить плодотворные выводы» на чисто механической основе, отрицая равно и начальный божественный толчок, допускавшийся Ньютоном. Существенный вклад в формирование современной нам астрономической картины мира внес в средние XVIII века первый русский ученый-энциклопедист Михаил Васильевич Ломоносов(1711-1765).Значение вклада Ломоносова в развитии естествознания состояло прежде всего в ...

Скачать
28875
0
0

... в недрах темных облаков, так что этот процесс практически недоступен прямому наблюдению. Астрофизики пытаются исследовать его теоретически, с помощью компьютерного моделирования. Превращение фрагмента облака в звезду сопровождается гигантским изменением физических условий: температура вещества возрастает примерно в 10 в 6 степени раз, а плотность - в 10 в 20 степени раз. Колоссальные изменения ...

Скачать
21627
0
1

... в телескоп визуально, но большая часть их излучения сосредоточена в далекой инфракрасной области спектра, начиная с 9500 ангстрем (А). Они несколько похожи по спектру на очень красные звезды, но представляют собой какой-то новый класс объектов с очень низкой температурой: 1000° и, может быть, даже 700°. Это приближает нас к допущению существования совсем темных звезд, но число их должно быть очень ...

0 комментариев


Наверх