7. Функции ДНК и ее химическая характеристика
Живые организмы состоят из органических веществ. Характеристики организмов кодируются набором генов, в которых записана вся наследственная информация. Количество генов может варьировать от нескольких сотен у простейших вирусов до десятков тысяч у высших организмов (около 30 тыс. у человека).
Носителем генетической информации является ДНК – органическая структура в виде двойной спирали. Информация записана с помощью последовательности нуклеотидов. В генетическом коде используется всего лишь 4 «буквы»-нуклеотида; код един для всех живых организмов.
Генетическая информация реализуется при экспрессии генов в процессах транскрипции и трансляции. Передача генетической информации следующему поколению происходит в результате репликации (самокопирования ДНК). Помимо генов в ДНК имеются некодирующие участки, функции которых пока ещё не ясны.
Дезоксирибонуклеиновая кислота (ДНК) – нуклеиновая кислота, которая содержит генетическую программу для развития и функционирования живых организмов. Все представители живых существ содержат геном ДНК. Исключение составляют вирусы, которые используют геном РНК, однако вирусы обычно не относят к живым организмам. Основная роль ДНК в клетках – долговременное хранение информации. Геном часто сравнивают с набором чертежей, так как он содержит инструкции по сборке многих компонентов клетки, таких как рибонуклеиновые кислоты, молекулы и белки. Участки ДНК, содержащие генетическую информацию о строении молекулы белка или РНК называют генами. Также ДНК содержит последовательности, отвечающие за изменение генетической информации.
У эукариотов, таких как животные или растения, ДНК находится внутри клеточного ядра, а у прокариотических организмов (например, бактерий) ДНК содержится в цитоплазме. В отличие от ферментов, ДНК напрямую не участвует в большинстве биохимических процессов, которыми управляет; некоторые ферменты могут вступать во взаимодействие с ДНК и копировать хранимую ей информацию, и либо создают копию ДНК (процесс репликации), либо транскрибируют и транслируют её в протеин.
ДНК – длинный полимер, состоящий из простых элементов, называемых нуклеотидами, которые скреплены связями из групп углеводов и фосфатов. Нуклеотид построен из пентозы, азотистого основания (пуринового или пиримидинового) и остатка фосфорной кислоты. Соединение пентозы и азотистого основания называется нуклеозидом.
В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологических полимеров – соответственно РНК или ДНК.
Эти связи включают четыре вида молекул, нуклеиновых оснований, и последовательность из четырёх таких оснований позволяет «закодировать» информацию. Главной функцией ДНК является процесс шифрования последовательности аминокислот в протеины при помощи генетического кода. Для прочтения этого кода клетка создаёт копию отрезка ДНК в нуклеиновой кислоте РНК.
8. Роль мутаций и окружающей среды в эволюции живого
Новый этап в развитии эволюционной теории наступил в 1859 году в результате публикации основополагающей работы Ч. Дарвина «Происхождение видов путем естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь». Основной движущей силой эволюции по Дарвину является естественный отбор. Отбор, действуя на особей, позволяет выживать и оставлять потомство тем организмам, которые лучше приспособлены для жизни в данном окружении. Действие отбора приводит к распадению видов на части – дочерние виды, которые, в свою очередь, со временем расходятся до родов, семейств и всех более крупных таксонов.
В середине XX века на основе теории Дарвина сформировалась синтетическая теория эволюции (сокращённо СТЭ). СТЭ является в настоящее время наиболее разработанной системой представлений о процессах видообразования. Основой для эволюции по СТЭ является динамика генетической структуры популяций. Основным движущим фактором эволюции считается отбор.
Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины ХХ века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации – новые варианты генов.
Влияние генов на строение и функции организма плейотропно: каждый ген участвует в определении нескольких признаков. С другой стороны, каждый признак зависит от многих генов; генетики называют это явление генетической полимерией признаков. Фишер говорит о том, что плейотропия и полимерия отражают взаимодействие генов, благодаря которому внешнее проявление каждого гена зависит от его генетического окружения. Поэтому рекомбинация, порождая всё новые генные сочетания, в конце концов создает для данной мутации такое генное окружение, которое позволяет мутации проявиться в фенотипе особи-носителя. Так мутация попадает под действие естественного отбора, отбор уничтожает сочетания генов, затрудняющие жизнь и размножение организмов в данной среде, и сохраняет нейтральные и выгодные сочетания, которые подвергаются дальнейшему размножению, рекомбинации и тестированию отбором. Причем отбираются, прежде всего, такие генные комбинации, которые способствуют благоприятному и одновременно устойчивому фенотипическому выражению изначально мало заметных мутаций, за счет чего эти мутантные гены постепенно становятся доминантными. Таким образом, сущность синтетической теории составляет преимущественное размножение определённых генотипов и передача их потомкам. В вопросе об источнике генетического разнообразия синтетическая теория признает главную роль за рекомбинацией генов.
Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида. В итоге для осуществления эволюции необходимо наличие трёх процессов:
· мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;
· рекомбинационного, создающего новые фенотипы особей;
· селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.
Все сторонники синтетической теории признают участие в эволюции трёх перечисленных факторов.
... в языке теории, т.е. в теоретических терминах, обозначающих абстрактные, идеализированные объекты. Чтобы эксперимент мог ответить на вопрос теории, этот вопрос нужно переформулировать в эмпирических терминах, значениями которых являются эмпирические объекты. ЗАКЛЮЧЕНИЕ Факты, с которыми имеет дело научная теория, можно разделить на три группы: · факты, которые она успешно объясняет;
... построения"(5). И т.п. Рассматриваемая книга В.Степина воспринималась в бывшем советском и воспринимается в нынеш-нем постсоветском философском сообществе, как закрывшая вопрос о принципиальной возможности аксиоматической перестройки произ-вольной теории, причем закрывшая его негативно. Поэтому остановимся на том, что сделал В.Степин в этой книге подробней. Прежде всего следует отметить, что ...
... моделирование широко используется там, где экспериментальные исследования трудоемки и дорогостоящи, или вообще невозможны (например, в изучении социальных явлений). Кроме задачи о прогнозе, математическое моделирование помогает классифицировать и систематизировать фактический материал, увидеть существующие связи в мозаике фактов. Это вытекает из того, что модель является специфическим -ярким и ...
... и социальных процессов. Поэтому с целью системного и интенсивного исследования механизма коэволюционного процесса, на современном этапе развития науки необходимо достигнуть органического единства и постоянного взаимовлияния природно-научных и гуманитарных знаний. 4. Современное естествознание характеризуется изменением характера объекта исследования и усилением роли комплексного подхода в его ...
0 комментариев