4. Основные этапы эволюции европейского естествознания
Физика - основа естественных наук. Всю историю развития физики можно условно разделить на три основных этапа: доклассической физики; классической физики; постклассической физики. Первый этап развития физики - этап доклассической физики - иногда называют донаучным - естествознание медленно произрастало из натурфилософии - философии природы, представляющей собой умозрительное истолкование природных явлений и процессов.. Этот этап - самый длительный: он охватывает период от времени Аристотеля (IVв. до н. э.) до конца XVIв. Этап доклассической физики открывает геоцентрическая система мировых сфер Аристотеля. Почти полторы тысячи лет отделяет завершенную геоцентрическую систему от достаточно совершенной гелиоцентрической системы польского математика и астронома Николая Коперника. В центре гелиоцентрической системы находится не Земля, а Солнце. Вершина гелиоцентрической системы - законы движения планет, открытые немецким астрономом Иоганом Кеплером. Астрономические открытия Галилео Галилея, его физические эксперименты и фундаментальные законы механики, сформулированные Исааком Ньютоном, положили начало этапу классической физики, который нельзя отделить четкой границей от первого этапа, произошло отделение физики от философии, физика превращается в самостоятельные науки, выявляются фундаментальные законы природы, физика становится эмпирической наукой. Начало второго этапа - этапа классической физики - связывают с работами итальянского ученого Галилео Галилея, одного из основателей точного естествознания, и трудами английского математика, механика, астронома и физика Исаака Ньютона, основоположника классической физики. Второй этап длился около трех веков до конца XIX в. Этап классической физики характеризуется крупными достижениями не только в классической механике, но и в других отраслях: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т. п. Назовем важнейшие из них: установлены опытные газовые законы; предложено уравнение кинетической теории газов; сформулирован принцип равномерного распределения энергии по степеням свободы, первое и второе начала термодинамики; открыты законы Кулона, Ома и электромагнитной индукции; разработана электромагнитная теория; явления интерференции, дифракции и поляризации света получили волновое истолкование; сформулированы законы поглощения и рассеивания света. К началу XX в. получены экспериментальные результаты, труднообъяснимые в рамках классических знаний. Поэтому был предложен совершенно новый подход - квантовый, основанный на дискретной концепции. Квантовую гипотезу впервые ввел в 1900 г. немецкий физик Макс Планк, вошедший в историю развития физики как один из основоположников квантовой теории. С введением квантовой концепции начинается третий этап развития физики - этап современной физики, включающий не только квантовые, но и классические представления. Характерная особенность этапа постклассической физики (первая половина 20 в.) заключается в том, что наряду с классическими развиваются квантовые представления, физика исследует микромир. На основании квантовой механики объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц - появились новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие. В первые десятилетия XX в. исследовалась радиоактивность и выдвигались идеи о строении атомного ядра. В 1938г. сделано важное открытие: немецкие радиохимики О. Ган и Ф. Штрассман обнаружили деление ядер урана при облучении их нейтронами. Это открытие способствовало бурному развитию ядерной физики, созданию ядерного оружия и рождению атомной энергетики. Одно из крупнейших достижений физики XX в. - это, безусловно, создание в 1947г. транзистора выдающимися американскими физиками Д. Бардиным, У. Браттейном и У. Шокли. С развитием физики полупроводников и созданием транзистора зарождалась новая технология - полупроводниковая, а вместе с ней и перспективная, бурно развивающаяся отрасль естествознания - микроэлектроника. Со второй половины XXв. можно рассматривать постнеклассический период развития физики, когда на основе полученных знаний формируется новая наука -синергетика- природные явления рассматриваются как сложные системы.
5. Проблема существования в математике. Значение математики для развития естествознания
Потребность изучения математики в большинстве случаев обусловливается практической деятельностью и стремлением человека познать окружающий мир. В то же время, иногда к познанию математики влекут и субъективные побуждения. Об одном из них Сенека писал: «Александр, царь Македонский, принялся изучать геометрию, - несчастный! - только с тем, чтобы узнать, как мала земля, чью ничтожную часть он захватил. Несчастным я называю его потому, что он должен был понять ложность своего прозвища, ибо можно ли быть великим на ничтожном пространстве». Возникает вопрос: может ли серьезный естествоиспытатель обойтись без глубокого познания премудростей математики? Ответ несколько неожиданный: да, может. Однако к нему следует добавить: только в исключительном случае. И вот подтверждающий пример. Чарлз Дарвин, обобщая результаты собственных наблюдений и достижения современной ему биологии, вскрыл основные факторы эволюции органического мира. Причем он сделал это, не опираясь на хорошо разработанный к тому времени математический аппарат, хотя и высоко ценил математику: «...в последние годы я глубоко сожалел, что не успел ознакомиться с математикой, по крайней мере настолько, чтобы понимать что-либо в ее великих руководящих началах; так, усвоившие их производят впечатление людей, обладающих одним органом чувств больше, чем простые смертные». Можно привести не один пример зарождения из математических идей наукоемких технологий и затем новых отраслей промышленности - прежде всего авиационной и космической. Российские ученые Н.Е. Жуковский (1847 - 1921) и С.А. Чаплыгин (1869 - 1942) математически обосновали подъемную силу крыла самолета и создали основы аэродинамики, а выдающиеся наши соотечественники-конструкторы А. Н. Туполеев (1888-1972), СВ. Ильюшин (1894-1977), А.С. Яковлев (1906-1989), Н.И. Камов (1902-1973), М.Л. Миль (1909-1970) и другие создали уникальную авиационную технику. Основоположником современной космонавтики является российский ученый и изобретатель К.Э. Циолковский (1857 - 1935), впервые теоретически обосновавший возможность полета в космос и предложивший идеи создания ракетно-космической техники, в том числе и математические расчеты скорости полета ракеты, что способствовало успешному развитию отечественной космонавтики.
Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания. «Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является», - утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей (1564 - 1642). В своем произведении «Пробирных дел мастер» (1623) он аргументировано противопоставлял произвольные «философские» рассуждения единственно истинной натуральной философии, доступной лишь знающим математику: «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана она на языке математики, и знаки ее - треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту». Основу естественнонаучных теорий составляет математическое описание со стройной логической структурой. Рассмотрим характерный пример логического доказательства, позволяющего сделать правильный вывод, даже не обращаясь к эксперименту как необходимому элементу естественнонаучной истины. Доказательство касается того, что все тела падают с одинаковой скоростью. Оно изложено Галилеем в книге «Беседы и математические доказательства, касающиеся новых отраслей науки» (1638). Опровергая утверждение Аристотеля (что в то время было актом огромного мужества) о том, что более тяжелые тела падают с большей скоростью, чем легкие, Галилей приводит следующее рассуждение. Допустим, Аристотель прав, и более тяжелое тело падает быстрее. Скрепим два тел - легкое и тяжелое. Тяжелое тело, стремясь падать быстрей, будет ускорять легкое, а легкое, стремясь двигаться медленнее тяжелого, будет его тормозить. Поэтому скрепленное тело будет двигаться с промежуточной скоростью. Но оно тяжелее, чем каждая из его частей, и должно двигаться не с промежуточной скоростью, а со скоростью большей, чем скорость более тяжелой его части. Возникло противоречие, а, значит, исходное предположение неверно. Приведенный пример иллюстрирует, насколько сильна логика рассуждений, присущая, как правило, математическому доказательству. Но то, что мы называем объективной реальностью, в конечном счете, есть то, что понятно нескольким мыслящим существам и могло бы быть понятно всем. Этой общею стороной, как мы увидим, может быть только гармония, выражающаяся математическими законами.
... 10-12 с, атома —10-15 с, ядра — 10-21 с.[1] 2. Дайте представление о научной методологии и формировании критерия истины в разное время. Чем отличается современная научная картина мира от классической? Как осуществляется преемственность идей и концепций? На протяжении всей истории западной мысли неоднократно поднимался один и тот же вопрос: что есть возникновение нового в мире, управляемом ...
... вещей (»арден 1987: 53-68, Назаретян 1991: 60, Абдеев 1994: 150- 160). Атрибутивная концепция информации - информация как мера упорядоченности структур и их взаимодействий на всех стадиях организации материи (Абдеев 1994: 162). Одна из самых сложных проблем современного естествознания - функционирование отражения в неживом мире (существует ли в неживом мире опосредующее звено между ...
... сущность теории химической эволюции и биогенеза. Опишите историю открытия и изучения клетки. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ Билет № 30 Назовите и охарактеризуйте междисциплинарные естественные науки. Сформулируйте третий закон механического движения Ньютона. Каким ...
... " наука, развивающаяся по своим особым законам, и поэтому для обсуждения особенностей научных революций в математике нам понадобился этот последний параграф. Глава 3. Гелиоцентрическая система мира. Свою систему мира великий польский астроном Николай Коперник (1473-1543) изложил в книге “О вращениях ...
0 комментариев