КОНТРОЛЬНАЯ РАБОТА ПО КУРСУ
«Концепции современного естествознания»
на тему:
«Основные проблемы цитологии и роль клетки в развитии живого»
Санкт-Петербург 2009
Введение
В современной науке важную роль занимают новые, молодые дисциплины, сформировавшиеся в самостоятельные разделы в последнее столетие и даже позже. То, что не было доступно для исследований раньше, теперь становится доступным благодаря техническим новшествам и современным научным методам, что позволяет регулярно получать новые результаты. Постоянно в средствах массовой информации мы слышим сообщения о новых открытиях в области биологии, а конкретно генетики и цитологии, эти смежные дисциплины переживают сейчас настоящий расцвет, а множество амбициозных научных проектов постоянно дают новые данные для анализа.
Одной из новых дисциплин чрезвычайно перспективных, является цитология, наука о клетках. Современная цитология – наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология – одна из относительно молодых биологических наук, ее возраст около 100 лет, хотя само понятие клетки было введено в обиход учёными гораздо раньше.
Мощным стимулом к развитию цитологии послужили разработка и совершенствование установок, приборов и инструментов для исследований. Электронная микроскопия и возможности современных компьютеров наряду с химическими методами дают все последние годы новые материалы для исследований.
1. Цитология как наука, её становление и задачи
Цитология (от греч. κύτος – пузырьковидное образование и λόγος – слово, наука) – раздел биологии, наука о клетках, структурных единицах всех живых организмов, ставит перед собой задачи изучения строения, свойств, и функционирования живой клетки.
Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа – в 17 веке. Термин «клетка» впервые предложил 1665 г. английский естествоиспытатель Роберт Гук (1635–1703) для описания ячеистой структуры наблюдаемого под микроскопом среза пробки. Рассматривая тонкие срезы высушенной пробки, он обнаружил, что они «состоят из множества коробочек». Каждую из этих коробочек Гук назвал клеткой («камерой»)». В 1674 году голландский учёный Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано.
Рисунок Роберта Гука, изображающий срез пробковой ткани под микроскопом (из книги «Микрография», 1664 год)
Однако бурное развитие цитологии началось только во второй половине 19 в. по мере развития и усовершенствования микроскопов. В 1831 Р. Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку. Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой. В 1838–1839 гг. немецкие учёные М. Шлейден (1804–1881) и Т. Шванн (1810–1882) практически одновременно выдвинули идею клеточного строения. Утверждение о том, что все ткани животных и растений состоят из клеток, составляет сущность клеточной теории. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Согласно клеточной теории, все растения и животные состоят из сходных единиц – клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления. В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли. Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала. Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения. Такие методы создавались и совершенствовались в течение всей второй половины 19 в.
Фундаментальное значение для дальнейшего развития клеточной теории имела концепция генетической непрерывности клеток. Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р. Вирхов сформулировал закон генетической непрерывности в афоризме «Omnis cellula e cellula» («Каждая клетка из клетки»). Когда была установлена роль ядра в клеточном делении, В. Флемминг (1882) перефразировал этот афоризм, провозгласив: «Omnis nucleus e nucleo» («Каждое ядро из ядра»). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином. Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца – хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом.
Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое – что существует механизм передачи наследственных признаков, который находится в ядре, а точнее – в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.
Второй этап в развитии цитологии начинается с 1900 гг., когда были ясно сформулированы законы наследственности, открытые австрийским учёным Г.И. Менделем еще в 19 в. В это время из цитологии выделяется отдельная дисциплина – генетика, наука о наследственности и изменчивости, изучающая механизмы наследования и гены, как носители наследственной информации, заключённые в клетках. Основой генетики явилась хромосомная теория наследственности – теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом.
Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь еще больших успехов в изучении строения клетки. На данный момент цитологические методы активно используются в селекции растений, в медицине – например, в изучении злокачественных образований и наследственных заболеваний.
... изменении химических свойств элементов и их соединений. Формой отображения Периодического закона является таблица - периодическая система химическмх элементов. 2. Космологические модели вселенной Космология – это раздел астрономии, изучающий Вселенную как целое и включающий в себя учение о строении и эволюции всей охваченной астрономическими наблюдениями части вселенной. Более полутора ...
и биологии сейчас нет ничего более настоятельного, нежели тотальная расшифровка нуклеотидного состава ДНК, что это напрямую может решить главные загадки и проблемы генетики и биологии Глава 1. Предмет генетики 1.1. Современные представления о гене Подобно тому, что в физике элементарными единицами вещества являются атомы, в генетике элементарными дискретными единицами наследственности и ...
... , в нервных клетках возникает слабый электрический сигнал – нервный импульс, который может распространяться по клеточным мембранам. Роль органических соединений в осуществлении функций клетки. Главная роль в осуществлении функций клетки принадлежит органическим соединениям. Среди них наибольшее значение имеют белки, жиры, углеводы и нуклеиновые кислоты. Белки. Белки представляют собой ...
... 0,05 - 0,10 Кальций Магний Натрий Железо Цинк Медь Йод Фтор 0,04 - 2,00 0,02 - 0,03 0,02 - 0,03 0,01 - 0,015 0,0003 0,0002 0,0001 0,0001 Содержание в клетке химических соединений Соединения (в %) Неорганические Органические Вода Неорганические вещества 70 - 80 1,0 - 1,5 Белки Углеводы Жиры Нуклеиновые кислоты 10 - 20 0,2 ...
0 комментариев