3. Краткая характеристика ЭПП дерново-подзолистых почв
В этой главе остановимся на краткой характеристике основных ЭПП участвующих в формировании профиля дерново-подзолистых почв.
Метаморфизм органического вещества.
Разнообразие процессов метаморфизма органического вещества, различная их интенсивность и сочетания с другими группами ЭПП формируют многообразие реальных органопрофилей почв.
1) Поступление органических остатков.
Процесс автохтонного и аллохтонного поступления органического вещества на поверхность почвы или в почву в виде растительных и животных остатков (надземных, подземных), экскрементов животных, хитиновых покровов насекомых. Ежегодно с опадом поступает около 55 ц/га (Родин, Базилевич, 1965; Ершов Ю. И., 2004).
2) Трансформация растительных остатков и их гумификация.
Процесс, складывающийся из множества физических (механическое измельчение), химических (окисление), фотохимических (разложение под действием солнечного света) и прежде всего биохимических (ферментативное расщепление биополимеров) реакций (Элементарные…, 1992). Достаточное количество солнечной радиации, режим увлажнения, растительный покров, богатый видовой состав почвенной микрофлоры, её относительно высокая биохимическая активность в течение довольно продолжительного периода биологической активности способствуют более глубокой трансформации растительных остатков, чем, например, в подзолистых почвах. Но, всё же, распад растительных остатков не заходит слишком глубоко. Крупные фрагменты лигнина, белков, полисахаридов, пигментов путем карбоксилирования и деметоксилирования постепенно трансформируются в гумусовые кислоты (Орлов Д. С. и др., 2005).
3) Минерализация органического вещества.
Процесс минерализации - это комплекс физико-химических и биохимических окислительно-восстановительных микропроцессов, приводящих к полному разложения органического материала и собственно гумусовых веществ до конечных продуктов окисления – оксидов и солей.
4) Комплексообразование и миграция продуктов гумификации.
Это процессы взаимодействия образующихся при гумификации органических кислот специфической (гумусовой) природы и неспецифических соединений с минеральной частью почвы, приводящие к её частичной или полной мобилизации. Так, например, Иванилова С. В. (2007) обнаружила корреляционную связь между содержанием водорастворимых соединений некоторых химических элементов (Fe, Mn, Zn, K, Na, Si, Al) с соединениями фенольной природы, что указывают на возможность их совместной миграции. При этом основным фактором максимального действия для содержания водорастворимых форм изученных металлов и фенолов является степень разложенности опада в подгоризонтах подстилки и положением в ландшафте.
5) Иммобилизация органо-минеральных соединений.
Органические и органо-минеральные соединения почв обладают не только миграционной, но иммобилизационной способностью, т. е. могут осаждаться из растворов и суспензий и закрепляться на различных геохимических барьерах – биогеохимических, физико-химических, механических и др. В дерново-подзолистых почвах основными механизмами иммобилизации являются осаждение на поверхностях порово-трещинного пространства, проникновение органических молекул в межслоевые промежутки смектитовых минералов и их сорбционное закрепление; увеличение отношения R2O3/фульвокислоты (при соотношении выше 2 происходит осаждение как растворимых соединений, так и золей); изменение ОВП в профиле; способность ионов кальция осаждать органические соединения (Элементарные…, 1992; Ершов Ю. И., 2004).
Метаморфизм минерального вещества.
Метаморфизм минерального вещества протекает под воздействием большой группы процессов, приводящих к трансформации ее вещественного состава и/или структуры по сравнению с почвообразующей породой без существенного перемещения унаследованного и новообразованного минерального материала и органического вещества.
1) Трансформация глинистых минералов.
Это совокупность таких изменений кристаллических решеток минералов, при которых изменяется химический состав и величина заряда, но сохраняется окристаллизованность минерала и его принадлежность к подклассу слоистых силикатов (Соколова Т. А. и др., 2005).
Выделяют два вида трансформационных изменений: деградацию и аградацию. Результатом деградации является образование глинистых минералов с лабильной кристаллической решеткой, состоящей из глинистых минералов с жесткой структурой. В почвенной литературе подробно описаны деградация иллитов (слюдистых минералов) и хлоритов. Примером деградации может служить следующий ряд: иллит → смешаннослойный иллит-вермикулит → вермикулит → монтмориллонит. В дерново-подзолистых почвах распространена деградация иллитов и магнезиально-железистых хлоритов.
Из аградационных трансформаций в дерново-подзолистых почвах распространенным является процесс хлоритизации. Хлоритизация – это процесс формирования межпакетных прослоек гидроксидов Al (реже Fe) в трехслойных силикатах. В результате такого процесса возникают хлоритоподобные минералы. Наиболее оптимальные условия хлоритизации складываются при рН=5,0. Наиболее интенсивно почвенные хлориты накапливаются в верхней 30-50 см толщи почв, если значения рН укладываются в диапазон от 4 до 6, что имеет место в дерново-подзолистых почвах. Эта группа минералов обычно отсутствует в самом верхнем минеральном горизонте, залегающим непосредственно под подстилкой, т. к. этот горизонт может содержать достаточное количество органических кислот с высокой комплексообразующей способностью, растворяющих прослойки гидроксида алюминия в почвенных хлоритах.
Соколова Т. А. с соавторами (2005) предлагает рассматривать хлоритизацию как самостоятельный ЭПП состоящий из нескольких микропроцессов, число которых, в зависимости от принятой гипотезы механизма хлоритизации, изменяется от двух до пяти.
2) Разрушение глинистых силикатов.
Этот ЭПП предполагает такое изменение минералов, в результате которого они или теряют окристаллизованность, превращаясь в аморфные соединения, или полностью растворяются.
В глинистых минералах между ионами действуют различные типы химических связей. Наиболее прочная, преимущественно ковалентная, связь существует в тетраэдрах между ионами Si и О. Менее прочные, главным образом ионные, силы удерживают в решетке элементы первой и второй групп. Растворение минералов начинается обычно с выхода из решетки щелочных и щелочно-земельных катионов. Связи Al-О в тетраэдрах менее прочны, чем Si-О; поэтому при растворении в среде, обеспечивающей возможность миграции Al, наблюдается его преимущественный, по сравнению с Si переход в раствор и остаточное накопление кремния в виде рентгенаморфного минерала – опала. Переходу Al в раствор способствует кислая реакция среды и наличие в растворе органических кислот с высокой комплексообразующей способностью, включая фульвокислоты. Когда условия среды не способствуют переходу Al в раствор, наблюдается преимущественный вынос Si и остаточное накопление соединении Al, обычно представленных гидроксидами Al (Соколова Т. А. и др., 2005).
Диагностика процесса затруднена. Обычно приводятся лишь косвенные доказательства этого процесса в почвах: обеднение профиля по сравнению с почвообразующей породой гранулометрическими фракциями и химическими элементами (Элементарные…, 1992).
Оспариваемым является сам факт разрушения глинистых минералов. Но русская школа признаёт этот процесс, и основные дискуссии разворачиваются о природе причин процесса разрушения силикатов. Роде А. А., Пономарева В. В., Гедройц К. К. разработали теорию о растворении тонкодисперсных минералов благодаря воздействию специфических и неспецифических агрессивных органических кислот выделяемых из мортмассы биоценозов. Продукты разрушения предположительно должны были выноситься или в иллювиальный горизонт, либо за пределы почвенного профиля.
Альтернативной концепцией являются теоретические построения Зайдельмана Ф. Р. (1974, 1998). На основе оригинальных исследований и изучения литературных материалов автор приходит к выводу о том, что подзолообразование – частный случай оглеения, проявляющегося при кратковременном сезонном переувлажнении на фоне промывного водного режима. В его работах показано, что источником агрессивных кислот и хелатообразующих органических соединений являются не столько органические остатки, сколько специфическая анаэробная микрофлора, развивающаяся при наличии легкогидролизуемых органических соединений. Кратковременно развитие оглеения способствует проявлению элювиально-глеевого процесса, следствием которого является обезжелезивание почвенной массы. В то же время оглеение способствует диспергации минерального вещества и развитию лессиважа. Поэтому с позиции Зайдельмана важным профилеобразующим ЭПП является процесс глееобразования приводящий к формированию элювиального горизонта.
Существуют и более радикальные теоретические конструкции (Соколов И. А. 2004), согласно которым обезиливание массы элювиального горизонта следует искать не в проявлении процессов разрушения тонкодисперсного глинистого компонента, не в лессиваже, а в исходной текстурной неоднородности почвенного профиля.
В монографии Почвообразовательные процессы (2006) выделяется группа процессов гранулометрической (текстурной) дифференциации почв. В этой группе выделено два процесса: селективное оподзоливание и лессиваж.
Селективное оподзоливание – макропроцесс, концептуальное понятие о котором было разработано Тонконоговым В. Д. (1996). Этот макропроцесс включает в себя совокупность деструктивных механизмов, способствующих высвобождению способных к миграции соединений железа и алюминия: кислотную агрессию (кислотный гидролиз, выделения живых корней и др.), элювиально-глеевую мобилизацию железа, избирательное биологическое поглощение химических элементов из почвы. Сущностью селективного оподзоливания (в отличие от альфегумусового подзолообразования) является избирательное разрушение относительно лабильных смешаннослойных минералов и, отчасти, гидрослюд, сосредоточенных почти исключительно в илистой фракции.
Продукты разрушения минералов илистой фракции удаляются из верхней части почвенной толщи и мигрируют с почвенными растворами за пределы профиля. Мигранты не образуют иллювиальных аккумуляций, в том числе совместно с органическим веществом. Таким образом, объясняется отсутствие иллювиального максимума ила во многих дерново-подзолистых почвах Европейской части России и Западной Сибири (Почвообразовательные процессы, 2006).
Не совсем ясна позиция Тонконогова В. Д. (1996) по отношению к концепции Зайдельмана Ф. Р. (1973, 1998). Ведь, по сути, селективное подзолообразование хорошо объединяется с редуцирующими и комплексообразующими началами глееобразования. Но лишь на отсутствии выноса оксида алюминия из илистой фракции песчаных почв в опытах Зайдельмана Ф. Р. делается вывод о том, что при глееобразовании не происходит разрушения илистой фракции, а лишь её обезжелезнение. Хотя выше приводится определение альфегумусового подзолообразования, при котором основным объектом кислотной агрессии являются минералы крупных гранулометрических фракций. Опыты Зайдельмана кратковременны, поэтому возможно предположить, что разрушение кристаллических решеток просто не успело начаться. Но в целом понятие о селективном подзолообразование интересно, позволяет заострить внимание на важных вопросах о текстурной дифференциации почв.
Оструктуривание почвенной массы.
Оструктуривание – процесс образования агрегатов почвенной массы из отдельных механических элементов. В дерново-подзолистых почвах выделяют пять ЭПП оструктуривания:
А. Собственно хемогенное оструктуривание:
1. коагуляционное.
Б. Биогенное оструктуривание:
2. травяно-корневое зернистое;
3. копролитовое.
В. Компрессионно-гидротермическое оструктуривание:
4. вертикальное растрескивание;
5. горизонтальное шлировое.
ЭПП коагуляционного оструктуривания.
Суть заключается в оструктуривании почвенной массы путем склеивания минеральных частиц органическими или органо-минеральными структорами с последующей денатурацией структора или без таковой.
В дерново-подзолистых почвах склеивание осуществляется, прежде всего, органо-железистыми продуктами жизнедеятельности микроорганизмов. Первичные коагуляционные агрегаты не превышают размеров 0,01-0,05 мм. В кислых дерновых горизонтах дерново-подзолистых почв наибольшее количество агрегатов имеет нерегулярную форму и представлено порошистыми (округло микрокомковатыми) или комковатыми отдельностями – образованными благодаря одному коагуляционному оструктуриванию. В других почвах эта структура столь хорошо не выражена, так как примешиваются другие процессы оструктуривания.
ЭПП травяно-корневого оструктуривания.
Процесс образования зернистых агрегатов с денатурированным гумусовым структуром путем дробления травянистыми корнями агрегатов более крупных. В дерново-подзолистых почвах практически не развит (Элементарные…, 1992).
ЭПП копролитообразования.
Процесс обособления почвенной массы на агрегаты при прохождении ее по кишечному тракту почвенной мезофауны. Почвенная масса, проходя через кишечник почвенных беспозвоночных, агрегируется путем механического сдавливания, склеивания кишечными выделениями, армирования непереваренными растительными волокнами. После выхода из организма «строителя» устойчивость (прочность, водопрочность) структур увеличивается за счет гумификации кишечных выделений при интенсификации деятельности микрофлоры в условиях богатства органического питания и подкарбоначивания (последнее в копролитах дождевых червей).
Процесс широко распространен в дерново-подзолистых почвах, особенно в умеренных фациях.
ЭПП оструктуривания вертикального растрескивания.
Оструктуривание почвенной массы, скрепленной любым типом структора, путем неоднократного разбиения вертикальными трещинами при периодическом изменении объёма.
Процесс этот в дерново-подзолистых почвах сопряженный, наибольшее развитие получает в текстурном горизонте, чему способствует его обогащенность коагулированной глиной и тяжелый гранулометрический состав, которые способствует большой амплитуде сжатия и расширения при набухании/иссушении и (или) промерзании/оттаивании. В результате этих процессов формируется призматическая (призматическо-глыбистая), ореховатая, призматически-ореховатая и ореховато-остроугольная структура. Неодинаковая усадка материала в верхней и нижней частях призм растрескивания приводит к напряжению, вызывающему скол призмы, т. е. к ее горизонтальному рассечению.
ЭПП горизонтального шлирового оструктуривания.
Оструктуривание почвенной массы путем ее сжатия сезонно образующимися ледяными шлирами, возникающими при промерзании суглинисто-глинистого влажного горизонта и располагающимся параллельно фронту промерзания (Элементарные…, 1992).
Е. В. Шеин (http://evg-shein.narod.ru) описывает механизм формирования такой структуры следующим образом: из водонасыщенной нижней части профиля подзолистой почвы в зимний период вода в жидком состоянии будет подниматься вверх по профилю и замерзать на определенной глубине, образуя характерные плоские шлиры. Передвижение воды возможно в глинистых почвах благодаря её уникальному свойству не замерзать при низких температурах, находясь в тонких капиллярах. Передвижение происходит по термоградиенту от более теплых участков к холодным. Давление шлира на вмещающую массу достигает 4-6 кг/см2, формируются листоватые или плитчатые отдельности сдавливания.
Распределение по интенсивности процессов оструктуривания в профиле дерново-подзолистой почвы следующее. В гумусово-элювиальном горизонте преобладают ЭПП коагуляционного оструктуривания, копролитообразования и совсем слабо развит процесс травяно-корневого зернистого оструктуривания. В элювиальном горизонте наибольшего развития получает ЭПП коагуляционного и горизонтального шлирового оструктуривания. В текстурном горизонте господствует ЭПП оструктуривания вертикального растрескивания.
Педотурбации биогенные.
Среди множества турбационных процессов в дерново-подзолистых почвах преимущественное развитие получают процессы перемещения и перемешивания почвенной массы в пределах одного или нескольких горизонтов под действием животных и растительных организмов, что приводит к гаплоидизации отдельных генетических горизонтов или всего почвенного профиля.
ЭПП зоотурбаций.
Процессы перемешивания и перемещения почвенной массы в пределах почвенного профиля, в результате деятельности роющих и почвенных животных (кротов, муравьев, жуков, дождевых червей и др.).
ЭПП фитотурбаций.
Процессы перемешивания и перемещения почвенной массы в пределах одного или нескольких горизонтов в результате жизнедеятельности корневых систем, а также вывалов деревьев с созданием временных генетических производных почв.
а. Корневое перемешивание.
По мере роста и утолщения корни сдавливают и перемещают прилегающие к ним почвенные частицы; после отмирания, разложения корней между отдельными частицами остаются пустые ходы и полости, часто заполняющиеся почвенной массой.
б. Вывалы деревьев.
При выпадении дерева корни выворачиваются часто с почвенной массой из профиля, в результате чего образуется ветровальный комплекс: западины с почвой, имеющей нарушенное строение и лишенной верхних горизонтов, и бугры, сложенные смесью материала различных горизонтов, осыпавшегося с корней (Элементарные…, 1992).
Изучая ветровальные почвенные нарушения И. И. Васенёв и В. О. Таргульян (1995) пришли к выводам, что они активизируют и усложняют строение глинисто-дифференцированных таежных почв. Значительно расширяется морфологическое разнообразие профилей. Ветровальные нарушения создают особую пространственно-временную самоподдерживающуюся пестроту почвенного покрова, причем картина эта меняется вслед за изменением сукцессионного состояния отдельных парцелл биогеоценоза. Благодаря этим турбациям таежное почвообразование приобретает ветровально-пульсационный характер общего развития таежных подзолистых почв с неполной замкнутостью ветровальных циклов – их развитие по своеобразной ветровальной спирали.
В результате ветровальных трансформаций сильно повышается (иногда на порядок) «фоновая» скорость гумусообразования, лессиважа, партлювации, трансформации глин и, вероятно, оглинивания, кислотного гидролиза и других процессов. Отчетливое углубление элювиальной части профиля в западине и разрушение фрагментов глинисто-иллювиальных горизонтов в насыпи свидетельствуют в пользу концепций педогенной глинистой дифференциации таежных подзолистых почв.
Ряд авторов, например М. В. Бобровский (2004), отводят столь высокую роль, что считают процессы, приводящие к формированию осветленных горизонтов в почвах подзолистого ряда, повсеместно распространёнными лишь благодаря антропогенезу.
Миграция вещества.
ЭПП глеевой миграции железа и марганца.
Процесс передвижения восстановленных в анаэробной среде форм Fe2+ и Mn2+ в составе гелей, органо-минеральных комплексов, солей минеральных кислот с последующим окислением и аккумуляцией гидроксидов Fe3+ и Mn4+ почвенном профиле и за его пределами. В дерново-подзолистых почвах этот процесс развивается при периодическом застое влаги атмосферных осадков и бокового притока в профиле почвы с последующем его промыванием. Отток растворов, содержащих Fe2+ и Mn2+, формирует элювиально-глеевый горизонт, обедненный этими элементами. Высыхание почвы и ее аэрация приводят при участии микроорганизмов к сегрегации гидроксидов в конкреции в пределах элювиально-глеевого горизонта.
Лессиваж.
Это ЭПП, при котором осуществляется нисходящая миграция неразрушенных глинистых частиц по трещинам и порам под влиянием гравитационных сил и их переотложение в нижележащих горизонтах. Процесс лессиважа диагностируется по наличию в иллювиальных горизонтах глинистых кутан, обогащенных глинистыми частицами по сравнению с вмещающим горизонтом.
Лессиваж можно рассматривать как ЭПП состоящий не менее чем из трех микропроцессов: диспергации глинистого вещества (например, при кратковременно переувлажнении, когда главные коагуляторы – соединения железа, восстанавливаются и растворяются) миграции и переотложения по стенкам трещин и пор и на поверхностях структурных агрегатов. Характерные глубины, на которых реализуются эти микропроцессы, подчиняются определенной закономерности: в верхних минеральных горизонтах осуществляется диспергирование и образование глинистых суспензий, в нижних иллювиальных – их переотложение и накопление, а в переходных возможны и вынос, и привнос, и «транзитное» перемещение глинистых частиц (Соколова Т. А, и др. 2005).
Партлювация.
Процесс перемещения по почвенному профилю суспензий песка и пыли с нисходящими токами воды.
Песчаные и пылеватые частицы, находящиеся в почве в исходно диспергированном, неагрегированном состоянии или освободившиеся из почвенных агрегатов при разрушении структуры (дождями, почвенной фауной, агротехническими и другими хозяйственными мероприятиями), переносятся вниз по профилю обычно в периоды сильного промачивания почвы во время дождей или снеготаяния. Зонами выноса твердых частиц являются преимущественно верхние части профиля (в отсутствие латеральных потоков влаги). Передвижение частиц в суглинистых почвах имеет линейный характер.
Партлювация приводит к формированию песчано-пылеватых кутан, их характерными морфологическими особенностями являются: их залегание поверх глинистых кутан, весьма обыкновенное для текстурного горизонта дерново-подзолистых почв; отличный от основы порядок упаковки частиц; резкий переход к подстилающей массе, когда кутаны развиты в горизонте ВТ (Элементарные…, 1992; Бронникова М. А., Таргульян В. О., 2005).
Заключение
В реферате были кратко рассмотрены теоретические основы учения о почвообразовательных процессах и на примере дерново-подзолистых почв показано их применение к анализу конкретного объекта.
В дерново-подзолистых почвах авторы книги Элементарные почвообразовательные процессы (1992) выделяют порядка 20 ЭПП. Конечно, выделение некоторых из них весьма условно. Например, разделение лессиважа и партлювации. По сути природа этих процессов одна и та же – перенос или волочение потоком влаги частиц. Но в силу специфики перемещения глинистого вещества, способности которого переходить в коллоидное состояние во многом зависят от геохимических условий среды. Спорным является и вопрос выделения в ЭПП процесса разрушения силикатов, так как не все авторы признают данный процесс независимым, то есть не принципиально отличным, например, от элювиально-глеевого процесса.
Ведущими, профилеобразующими ЭПП в дерново-подзолистых почвах являются: поступление и трансформация органических остатков, гумификация, процесс разрушения силикатов и лессиваж. Хотя видимо не менее важными должны быть и процессы педотурбаций, особенно связанные с ветровальными турбациями и деятельностью почвенной мезофауны.
Литература
Бобровский М. В. Лесные почвы: биотические и антропогенные факторы формирования / Восточноевропейские леса: история в голоцене и современность. Кн. 1. – М.: Наука, 2004. – С. 381-419.
Бронникова М. А., Таргульян В. О. Кутанный комплекс текстурно-дифференцированных почв. – М.: ИКЦ «Академкнига», 2005. – 197 с.
Васенёв И. И., Таргульян В. О. Ветровал и таежное почвообразование. – М.: Наука, 1995 – 247 с.
Заугольнова Л. Б., Морозова О. В. Распространение и классификация неморально-бореальных лесов / Восточноевропейские леса. Кн. 2.: - М.: Наука, 2004. – 575 с.
Дюкарев А. Г. Ландшафтно-динамические аспекты таежного почвообразования в Западной Сибири. – Томск: Изд-во НТЛ, 2005. – 284 с.
Ершов Ю. И. Органическое вещество биосферы и почвы. - Новосибирск: Наука, 2004. – 104 с.
Зайдельман Ф. Р. Подзоло- и глееобразование. М.: Изд-во АН СССР, 1974. 208 с.
Зайдельман Ф. Р. Процесс глееобразования и его роль в формировании почв. М.: Изд-во Моск. Ун-та, 1998. – 300 с.
Иванилова С. В. Состав и свойства водорастворимых соединений почв Центрального-Лесного государственного природного биосферного заповедника: Автореф. дис. … канд. биол. наук. М., 2007. - 26с.
Козловский Ф. И. Теория и методы изучения почвенного покрова. – М.: ГЕОС, 2003. – 536 с.
Лапшина Е. Д. Флора болот юго-востока Западной Сибири. – Томск: Изд-во Том. Ун-та, 2003. – 296 с.
Орлов Д. С., Садовникова Л. К., Суханова Н. И. Химия почв. – М.: Высш. шк., 2005. – 558 с.
Подзолистые почвы центральной и восточной частей европейской территории СССР. Л.: «Наука», 1980. – 301 с.
Почвообразовательные процессы. – М.: Почвенный ин-т им. В. В. Докучаева, 2006. – 510 с.
Родин Л. Е., Базилевич Н. И. Динамика органического вещества и биологический круговорот зольных элементов и азота в основных типах растительности земного шара. – М.; Л.: Наука, 1965. – 253 с.
Розанов Б. Г. Морфология почв. – М.: Академический Проект, 2004. – 432 с.
Соколов И. А. Теоретические проблемы генетического почвоведения – Новосибирск: «Гуманитарные технологии», 2004. – 288 с.
Соколова Т. А., Дронова Т. Я., Толпешта И. И. Глинистые минералы в почвах. – Тула: Гриф и К, 2005. – 336 с.
Тонконогов В. Д. О генезисе почв с осветленным элювиальным горизонтом // Почвоведение. 1996, № 5. С. 564-569.
Шеин Е. В. О ледяных надолбах и структуре подзолистого горизонта // http://evg-shein.narod.ru/pop/cryogen_structure.htm
... , но иногда выходят и за него. Взаимосвязь животного населения с другими компонентами природы весьма сложна, но давно установлена достаточно четкая взаимосвязь животных с определенными растительными сообществами. В изучении животного мира России ведущая роль принадлежит географам с биологической подготовкой (Н.А. Северцев, Л. С Берг) и зоологам с широким географическим кругозором (М.А. Мензбир, ...
... формулы Фрейндлиха для описания процессов адсорбции ТМ почвами также позволяет обнаружить на изотермах наличие двух и более контрастно адсорбции [15]. Рисунок 11- Изотермы адсорбции свинца дерново-подзолистой почвы [15] По мнению В.С.Горбатова [15] разделение изотерм адсорбции на два участка с энергетической гетерогенностью адсорбционных мест и указывает на наличие в почве двух и более ...
... лесные фации гидроморфной группы. Восстановительные смены фитоценозов этой группы сопровождаются существенными изменениями увлажненности, которые в конечном итоге приводят к заболачиванию. /3/ Влияние растительности на почвы Никольского лесхоза. Изучаемая территория находится на границе южной тайги и мелколиственных лесов. Растения поймы реки представлены луговыми видами. Видовой состав ...
... ) до 8-9 и выше (карбонатные и засоленные почвы), достигая максимума в щелочных солонцах и содовых солончаках (10-11). Наиболее низкими концентрациями и кислой реакцией характери-зуются почвенные растворы подзолистых и болотных почв таежной зоны. Концентрация их составляет несколько десятков миллиграммов на один литр раствора при рН от 5 до 6. Содержание основных катионов и анионов измеряется ...
0 комментариев