2. Представления о пространстве и времени в античной философии
Уже в античном мире мыслители задумывались над природой и сущностью пространства и времени. Так, одни из философов отрицали возможность существования пустого пространства, или, по их выражению, небытия. Это были представители элейской школы в Древней Греции. А знаменитый врач и философ Эмпедокл хотя и поддерживал учение о невозможности пустоты, в отличие от элеатов утверждал реальность изменения и движения. Он говорил, что рыба, например, передвигается в воде, а пустого пространства не существует.
Некоторые философы, в том числе Демокрит, утверждали, что пустота существует, как материи и атомы, и необходима для перемещений и соединений атомов.
Наиболее полную и последовательную попытку оторвать время от материи сделал Ньютон. Он назвал его абсолютное, истинное, математическое время, которое "...по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью". И пространство у него было точно таким же: абсолютным, истинным и пустым, не связанным ни с предметами, в нем находящимися, ни с их изменениями, ни со временем. Оно было как бы рамкой для мира реальных вещей, и в этом абсолютном пространстве царило абсолютное движение, измеряемое уже известным нам абсолютным временем. Зачем понадобилось творцу теории всемирного тяготения это пространство? Затем, что без него никак не удавалось справиться с движением.
Еще в древности было подмечено, что в спокойно плывущем по глади реки корабле путешественник не может сказать, движется он или стоит на месте, если не видит берега. Галилей распространил эти наблюдения и на физические опыты. Он писал, что столь же безразличным к движению окажется и камень, "падающий с высоты корабельной мачты; этот камень всегда окончит свое падение, ударив в одно и то же место как в том случае, когда корабль неподвижен, так и в том, когда он идет быстрым ходом... Я... произвел этот опыт; но еще перед тем естественное рассуждение привело меня к твердому убеждению в том, что из него должно получиться именно то, что действительно и получилось". Следовательно, никакими опытами нельзя установить, движемся мы или нет, если движение происходит без ускорения. В этом - суть "принципа относительности" Галилея. Ньютон был согласен с этим принципом. И все-таки ему казалось, что должно быть нечто незыблемое (человек религиозный, он называл пространство "бесконечным чувствилищем бога"), некая основа, опираясь на которую, наблюдатель может ощутить движение без ускорения. Абсолютное пространство и было для Ньютона неподвижной системой отсчета. Физика XVIII столетия приняла принципы Ньютона и пользовалась ими весьма плодотворно. Единственной деталью, портившей фасад стройного здания, была скорость света. Приходилось считать ее бесконечно большой, так как в пустом пространстве только такой она и могла быть, а наблюдения этого не подтверждали. Ещё в 1675 г. датский астроном Олаус Ремер представил в Парижскую академию наук мемуар "Относительно доказательства движения света". В работе описывались наблюдения за Юпитером и его спутником Ио. Оказывается, в январе Ио появлялась из-за Юпитера на целых 16 минут 36 секунд раньше, чем в июне. Поскольку в июне Земля и Юпитер находились по разные стороны от Солнца, а в январе - по одну сторону, оставалось предположить, что все дело в конечной скорости света. Ему требовалось в каждом случае проходить до Земли иное расстояние. Несложное деление - и Ремер получает первую в истории науки величину скорости света: около 280 тыс. километров в секунду, - превосходный результат, особенно если принять во внимание неточность часов того времени и другие ошибки.
Согласно аристотелевской традиции, все законы, которые управляют Вселенной, можно вывести чисто умозрительно и нет никакой необходимости проверять их на опыте. Поэтому до Галилея никто не задумывался над тем, действительно ли тела разного веса падают с разными скоростями. Говорят, что Галилей демонстрировал ложность учения Аристотеля, бросая тела разного веса с падающей Пизанской башни. Это наверняка выдумка, но Галилей действительно делал нечто подобное: он скатывал по гладкому откосу шары разного веса. Такой эксперимент аналогичен сбрасыванию тяжелых тел с башни, но он проще для наблюдений, так как меньше скорости. Измерения Галилея показали, что скорость всякого тела увеличивается по одному и тому же закону независимо от веса тела. Например, если взять шар и пустить его вниз по наклонной плоскости с уклоном метр на каждые десять метров, то, каким бы тяжелым ни был шар, его скорость в конце первой секунды будет один метр в секунду, в конце второй секунды – два метра в секунду и т. д. Конечно, свинцовая гиря будет падать быстрее, чем перышко, но только из‑за того, что перо сильнее замедляется силой сопротивления воздуха, чем гиря. Если бросить два тела, сопротивление воздуха для которых невелико, например две свинцовые гири разного веса, то они будут падать с одинаковой скоростью.
Ньютон вывел свои законы движения, исходя из измерений, проведенных Галилеем. В экспериментах Галилея на тело, катящееся по наклонной плоскости, всегда действовала одна и та же сила (вес тела) и в результате скорость тела постоянно возрастала. Отсюда следовало, что в действительности приложенная к телу сила изменяет скорость тела, а не просто заставляет его двигаться, как думали раньше. Это еще означало, что если на тело не действует сила, оно будет двигаться по прямой с постоянной скоростью. Такую мысль впервые четко высказал Ньютон в своей книге "Математические начала", вышедшей в 1687 г. Этот закон теперь называется Первым законом Ньютона. О том, что происходит с телом, когда па него действует сила, говорится во Втором законе Ньютона. Он гласит, что тело будет ускоряться, т. е. менять свою скорость, пропорционально величине силы. (Если, например, сила возрастет в 2 раза, то и ускорение в 2 раза увеличится). Кроме того, ускорение тем меньше, чем больше масса (т. е. количество вещества) тела. (Действуя на тело вдвое большей массы, та же сила создает вдвое меньшее ускорение). Всем хорошо известно, как обстоит дело с автомобилем: чем мощнее двигатель, тем больше создаваемое им ускорение, но чем тяжелее автомобиль, тем меньше ускоряет его тот же двигатель.
Кроме законов движения Ньютон открыл закон, которому подчиняется сила тяготения. Этот закон таков: всякое тело притягивает любое другое тело с силой, пропорциональной массам этих тел. Следовательно, если вдвое увеличить массу одного из тел (скажем, тела А), то и сила, действующая между телами, тоже увеличится в 2 раза. Мы так считаем потому, что новое тело А можно представить себе составленным из двух тел, масса каждого из которых равна первоначальной массе. Каждое из этих тел притягивало бы тело В с силой, равной первоначальной силе. Следовательно, суммарная сила, действующая между телами А и В, была бы вдвое больше этой первоначальной силы. А если бы одно из тел имело массу, скажем, вдвое, а второе – втрое больше первоначальной массы, то сила взаимодействия возросла бы в 6 раз. Теперь понятно, почему все тела падают с одинаковой скоростью: тело с удвоенным весом будет тянуть вниз удвоенная гравитационная сила, но и масса тела при этом будет в 2 раза больше. По Второму закону Ньютона эти два эффекта компенсируют друг друга, и ускорение будет во всех случаях одинаковым.
Закон тяготения Ньютона говорит, что чем дальше тела друг от друга, тем меньше сила их взаимодействия. Согласно этому закону, гравитационная сила притяжения звезды составляет ровно четверть силы притяжения такой же звезды, но находящейся на вдвое меньшем расстоянии. Закон Ньютона позволяет с большой точностью предсказать орбиты Земли, Луны и планет. Если бы закон всемирного тяготения был иным и сила гравитационного притяжения уменьшалась быстрее, чем по закону Ньютона, то орбиты планет были бы не эллипсами, а спиралями, сходящимися к Солнцу. Если же гравитационное притяжение убывало бы с расстоянием медленнее, то притяжение удаленных звезд оказалось бы сильнее притяжения Земли.
Космологическая теория Д. Бруно связала воедино бесконечность Вселенной и пространства. В своем произведении "О бесконечности, Вселенной и мирах" Бруно писал: "Вселенная должна быть бесконечной благодаря способности и расположению бесконечного пространства и благодаря возможности и сообразности бытия бесчисленных миров, подобных этому..."1. Представляя Вселенную как "целое бесконечное", как "единое, безмерное пространство", Бруно делает вывод и о безграничности пространства, ибо оно "не имеет края, предела и поверхности".
Практическое обоснование выводы Бруно получили в "физике неба" И. Кеплера и в небесной механике Г. Галилея. В гелиоцентрической картине движения планет Кеплер увидел действие единой физической силы. Он установил универсальную зависимость между периодами обращения планет и средними расстояниями их до Солнца, ввел представление об их эллиптических орбитах. Концепция Кеплера способствовала развитию математического и физического учения о пространстве.
Подлинная революция в механике связана с именем Г. Галилея, Он ввел в механику точный количественный эксперимент и математическое описание явлений. Первостепенную роль в развитии представлений о пространстве сыграл открытый им общий принцип классической механики — принцип относительности Галилея. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, покоящихся или движущихся равномерно и прямолинейно с постоянной по величине и направлению скоростью. Такие системы называются инерциальными. Математические преобразования Галилея отражают движение в двух инерциальных системах, движущихся с относительно малой скоростью (меньшей, чем скорость света в вакууме). Они устанавливают инвариантность (неизменность) в системах длины, времени и ускорения.
Дальнейшее развитие представлений о пространстве и времени связано с рационалистической физикой Р. Декарта, который создал первую универсальную физико-космологическую картину мира. В основу ее Декарт положил идею о том, что все явления природы объясняются механическим воздействием элементарных материальных частиц. Взаимодействием элементарных частиц Декарт пытался объяснить все наблюдаемые физические явления: теплоту, свет, электричество, магнетизм. Само же взаимодействие он представлял в виде давления или удара при соприкосновении частиц друг с другом и ввел таким образом в физику идею близкодействия.
Декарт обосновывал единство физики и геометрии. Он ввел координатную систему (названную впоследствии его именем), в которой время представлялось как одна из пространственных осей. Тезис о единстве физики и геометрии привел его к отождествлению материальности и протяженности. Исходя из этого тезиса он отрицал пустое пространство и отождествил пространство с протяженностью.
Декарт развил также представление о соотношении длительности и времени. Длительность, по его мнению, "соприсуща материальному миру. Время же — соприсуще человеку и потому является модулем мышления". "...Время, которое мы отличаем от длительности, — пишет Декарт в "Началах философии", — есть лишь известный способ, каким мы эту длительность мыслим..."
Время, как и пространство, имеет объективный характер. Они неотделимы от материи, связаны с ее движением и друг с другом. По выражению И. Пригожина, "для большинства основателей классической науки (и даже А. Эйнштейна) наука была попыткой выйти за рамки мира наблюдаемого, достичь вневременного мира высшей рациональности — мира Спинозы". Фактически все картины мира, рожденные точной наукой, освобождены от развития, "отрицают время".
Понимание времени, увлекающего мир в непрерывное движение, наиболее ярко выразил Гераклит (ок. 530 — 470 до н.э.): "В одну реку нельзя войти дважды", "Все течет, все изменяется", "Мир является совокупностью событий, а не вещей". Законы природы неизменны, они сохраняются в любом месте и в любое время. У Прокла (ок. 412 — 485) для большей строгости к понятию времени применены геометрические рассуждения: "Время не подобно прямой линии, безгранично продолжающейся в обоих направлениях. Оно ограничено и описывает окружность. Движение времени соединяет конец с началом, и это происходит бесчисленное число раз. Благодаря этому время бесконечно". Платон (ок. 428 — 347 до н. э.) писал: "Поскольку день и ночь, круговороты месяцев и лет, равноденствия и солнцестояния зримы, глаза открыли нам число, дали понятие о времени и побудили исследовать природу Вселенной". Архимед в трактате "О спирали" показывал, что спираль соединяет цикличность с поступательным движением. Может быть, спираль подойдет для наглядного образа времени, соединив поток и окружность?! Узор из спирали с солнцами был найден на остатках кувшинов неолита и на древнем календаре — жезле из бивня мамонта, обнаруженном недавно в Восточной Сибири. Археологи истолковывают эти узоры как отображение идеи Времени.
Заключение
Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках. Физические, химические и другие величины непосредственно или опосредованно связаны с измерением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому расширение и углубление знаний о мире связано с соответствующими учениями о пространстве и времени.
Список используемой литературы
1. Концепции современного естествознания: учеб. пособие для студ. вузов / Татьяна Яковлевна Дубнищева. — 6-е изд., испр. и доп. — М.: Издательский центр "Академия", 2006. — 608 с.
2. Концепции современного естествознания: Учебник для вузов / Под ред. проф. В.Н. Лавриненко, проф. В.П. Ратникова. — 3-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006. - 317 с
3. Кунафин М. С. Концепции современного естествознания: Учебное пособие. Изд-е . – Уфа, 2003. – с. – ISBN
4. Концепции современного естествознания: Учебник для вузов / Под ред. проф. В.Н. Лавриненко, проф. В.П. Ратникова. — 3-е изд., перераб. и доп. — М.: ЮНИТИ-ДАНА, 2006. - 317 с.
5. Стивен Хокинг Краткая история времени от большого взрыва до черных дыр
... на голой сцене. [26] Обе категории отражают единообразную особенность движущейся материи, но каждая придает её свой колорит. Именно поэтому субстанциальную и реляционную концепции правильнее именовать разновидностями одной категорийной концепции пространства и времени тем более, если учесть известное определение понятия "категории" : "Категории (от греч. kategoria - высказывание, признак) в ...
... всех фундаментальных положений классической космологии. Общая теория относительности отождествила гравитацию с искривлением четырёхмерного пространства-времени. Чтобы построить работающую относительно несложную модель, учёные вынуждены ограничить всеобщий пересмотр фундаментальных положений классической космологоии: общая теория относительности дополняется космологическим постулатом однородности ...
... такое явление не согласуется с нашими представлениями о сложении длин перемещений: принятие постоянства скорости света в качестве постулата требует пересмотра представлений о пространстве и времени. Именно такой пересмотр Эйнштейн осуществил в специальной теорией относительности (СТО). Стартовав в факта постоянства скорости света в любой системе отсчета, он проследил за тем, как надо видоизменить ...
... уже не реальности, а опыта. Это было углублением теоретико-познавательного анализа в область субъективности и первой попыткой построения субъективной онтологии познавательного процесса. С этой точки зрения он рассматривал пространство и время в качестве предпосылок познавательного отношения к миру, коренящихся в структуре трансцендентального субъекта. Тем самым была заложена основа научного ...
0 комментариев