2.2 Революция в физике на рубеже XIX и XX столетий
Открытия на рубеже XIX-XX столетий показали, что вещество обладает качествами, которыми не может обладать, если классическая механика точно объясняет мир. Оно, как выяснилось из изучения электрона, может не иметь точно определяемой массы, что разрушает классические законы сохранения массы и движения. Масса в классической физике понималась как основной признак материальности тел, поэтому физики забили тревогу: «Материя исчезла!». Энергия, как показывала радиоактивность, может браться неизвестно откуда, в нарушение классического закона сохранения энергии.
Попытки снять названные противоречия привели к созданию новых физических теорий, заставивших пересмотреть представления о пространстве, времени и веществе, характерные для классической физики. Это были две концепции - теория квантов и теория относительности, которые стали фундаментом для новой физики.
2.3 Квантовая теория
Квантовая теория кардинально изменила классические представления о веществе. В классической физике Ньютона мир понимался как состоящий из материи, а материя – из отдельных частиц, корпускул. К концу XIX в. был открыт еще один вид материи – поле. Оба вида материи, считалось, подчиняются законам. Это понимание устройства мира закрепилось в детерминистском принципе, сформулированном в XIX в. французским физиком Пьером Лапласом. Суть этого принципа можно изложить следующим образом: во Вселенной все явления связаны причинно-следственной связью, которая имеет законосообразный характер. Законы позволяют по ее состоянию в определенный момент точно рассчитать, как будет развиваться Вселенная и каким будет ее состояние в следующий интересующий нас момент.
Исследовавший тепловые излучения М. Планк установил, что в процессах излучения энергия может быть отдана и поглощена не непрерывно и не в любых количествах, а лишь небольшими неделимыми порциями, которые исследователь назвал квантами действия. Величина энергии кванта определяется по формуле Е = hy, где h – определенная константа (постоянная Планка), а y – частота света. Формула была опубликована 14 декабря 1900 г., который стали считать днем рождения квантовой теории и всей атомной физики, потому что понятие кванта позволило создать модель атомной оболочки и атомного ядра.
Вклад датского физика Нильса Бора в развитие квантовой теории состоял в том, что он принимает теорию квантов и на ее основе в 1913 г. создает теорию атома. Она основана на двух постулатах, совершенно несовместимых с классической физикой: 1) в каждом атоме существуют несколько стационарных состояний, в которых электрон может существовать, не излучая; 2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии. Она стала первым шагом к идее о «волнах материи», выдвинутой французским физиком Луи де Бройлем.
Де Бройль утверждал, что волновые свойства наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам. Каждой волне соответствует электромагнитная частица, а любой частице – волна. Волновая механика де Бройля (1924 г.) объясняла, почему электрон может вести себя то как частица, то как волна. Исходя из идеи де Бройля о волнах материи, Эрвин Шрёдингер в 1926 г. вывел основное уравнение волновой механики (уравнение Шрёдингера), позволяющее определить возможные состояния квантовой системы и их изменение во времени. Уравнение содержало так называемую волновую функцию y (пси-функцию), описывающую волну (в абстрактном, конфигурационном пространстве). Пси-функция определяла плотность вероятности нахождения частицы в данной точке. В рамках волновой механики атом можно было представить в виде ядра, окруженного своеобразным облаком вероятности. С помощью пси-функции вычисляется вероятность присутствия электрона в определенной области пространства.
Иначе говоря, в квантовой механике разница между полем и системой частиц исчезала.
Экспериментальными доказательствами волновой теории вещества стали опыты по обнаружению дифракции электронов, нейтронов, атомов и молекул.
Квантовая механика включает также сформулированный в 1926 г. немецким физиком Вернером Гейзенберг принцип неопределенности, в соответствии с которым координаты и импульс движущейся частицы не могут одновременно принимать точные значения. Для предсказания положения и скорости частицы, согласно классической механике, важно иметь возможность точно измерять ее положение и скорость. Но законы классической механики для микромира неприменимы, поэтому, чем точнее измеряется положение частицы (ее координаты), тем менее точными оказываются измерения скорости.
Фундаментальным принципом квантовой механики является также принцип дополнительности, который Н. Бор сформулировал так: «Понятия частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего». Он объясняет, почему нельзя одновременно измерить координаты и импульс движущейся частицы: как волны они как бы «размазаны» в пространстве, поэтому можно говорить не об их точных координатах, а лишь о вероятности их обнаружения в определенном пространстве.
Квантовая теория изменила классические представления о структуре материи. Для классического понимания материальной частицы было характерно ее выделение из окружающей среды, обладание собственным движением и местом нахождения в пространстве. В квантовой теории частица стала представляться как функциональная часть системы, в которую она включена, не имеющая одновременно координат и импульса (мера движения, Ft), характеризующаяся ее квантовым состоянием, представляющим собой комбинацию положения и скорости. В классической теории движение рассматривалось как перенос частицы, остающейся тождественно самой себе, по определенной траектории. Двойственный характер движения частицы обусловил необходимость отказа от такого представления движения. Классический (динамический) детерминизм уступил место вероятностному (статистическому). Имеется в виду тот факт, что квантовая теория предсказывает результаты измерения движения частиц не однозначно, но ряд результатов и их вероятность. Скажем, если мы выполняем одно и то же измерение для многих одинаковых систем с одинаковыми начальными условиями (к примеру, измеряем скорость движения молекул одного и того же газа при нагревании на одну и ту же температуру), мы обнаружим, что у нас молекулы будут двигаться с разными скоростями, и мы можем предсказать, какая часть из них будет двигаться с одной скоростью, какая – с другой, а какая – с третьей. Квантовая механика ввела, таким образом в науку элемент непредсказуемости, случайности и нанесла сокрушительный удар по лапласовскому детерминизму.
Важной составной частью квантовой теории является квантовая статистика или статистическая физика квантовых систем, состоящих из большого числа частиц. Квантовая статистика отказывается от представления различимости частиц и рассматривает их как тождественные. Она не ставит себе целью описание индивидуальных событий, происходящих в пространстве и времени, как это делала классическая физика, а описывает поведение систем частиц посредством статистического метода с его волнами вероятности, а не посредством законов классической физики.
Появление квантовой теории привело к созданию новой физической картины мира. Благодаря этому физика из науки, которая изучает и объясняет механизм явлений, превратилась в науку, разрабатывающую методы искусственного воспроизведения физических процессов, и стала лидером современного естествознания.
... : содержательный аспект 2.2.1 Постнеклассическое естественнонаучное образование и концепция самоорганизации В данном параграфе представлена презентация синергетической парадигмы на арене познания постнеклассического естественнонаучного образования. Поскольку появление такой парадигмальной установки на методологическом горизонте можно считать свершившимся фактом, то представляет интерес задача ...
... . Ученик Франкла, попытавшийся на базе Логотерапии и экзистенциального анализа Франкла, разработать самостоятельный вид психотерапии, названный им экзистенциальный анализом. Автор нескольких книг и большого числа статей, посвященных теории и практике экзистенциального анализа(GLE). Президент Общества Экзистенциального Анализа и Логотерапии в Вене. Разработал оригинальную теорию экзистенциальной ...
... пище, но, боясь сделать это, чем и была приведена в состояние сильного беспокойства. Вопрос 42 Возрождение философского реализма и его значение для философии науки Одна из главных проблем, характерных для истории науки, - понять, объяснить, как, каким образом внешние условия - экономические, социокультурные, политические, мировоззренческие, психологические и другие - отражаются на результатах ...
... философии - особенно с методологических позиций материалистического понимания истории и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы «триумфального шествия» логического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его ...
0 комментариев