2. ДНК - хранитель наследственной информации

Почти одновременно с Менделем выдающийся австрийский биохимик Фридрих Мишер сделал открытие, также много десятилетий остававшееся малоизвестным. Мишер обнаружил, что в ядрах высших организмов содержатся молекулы, до него не известные ученым. Они отличались по своему строению и свойствам от белков, липидов и углеводов, имели высокий молекулярный вес и главное обнаруживались в ядрах клеток. По имени ядра (нуклеус по-латыни) Мишер назвал новый класс веществ нуклеинами.

Через несколько лет, когда удалось улучшить методы очистки нуклеина, стало ясно, что нуклеины состоят из двух сортов молекул - простых белков и особых кислот, названных нуклеиновыми. Еще через несколько десятилетий биохимики установили, что нуклеиновые кислоты делятся на два типа - дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК).

Некоторые биологи еще в прошлом веке высказывали догадки о возможной роли нуклеиновых кислот в передаче наследственности (в частности, братья Оскар и Рихард Гертвиги). Их предположения основывались на том, что именно ядра играли роль в - передаче наследственности. Позднее было найдено, что в ядрах находятся хромосомы, 'поведение которых указывало на их роль в хранении наследственных признаков. Но как раз в хроматиновом материале ядер биохимики и обнаруживали максимальное количество нуклеиновых кислот.

Тем не менее эти первоначальные, буквально пророческие •взгляды на роль нуклеиновых кислот были забыты уже в начале XX в. Хотя биологи и химики накапливали данные о возможной роли нуклеиновых кислот в хранении и реализации генетической информации, до начала 50-х годов большинство биологов связывало осуществление «генетических таинств» с активностью белковых молекул.

Переход от этих воззрений к реальному положению вещей был сделан только в 1953 г. двумя исследователями - англичанином, физиком по специальности Френсисом Криком, и американцем, биологом Джеймсом Уотсоном. Они предложили гипотезу о строении ДНК, гипотезу, объяснявшую не только бессвязные и потому противоречивые химические данные, но и генетические каноны. По мнению Уотсона и Крика, ДНК должна была состоять из двух нитевидных молекул, свернутых спиралью, которая могла раскручиваться, и тогда на каждой половине достраивался бы зеркально подобный партнер, завершая «размножение» молекул. Этот принцип «двойной молекулы» с зеркально располагаемыми радикалами в соседствующих частях молекулы был предложен еще в 1928 г. советским биологом Н.К. Кольцовым, но он не верил, что нуклеиновые кислоты несут наследственную запись и предложил свою модель «двойной молекулы» для белковых структур. Теперь принцип Кольцова получил химическое воплощение в структуре двойной спирали ДНК, предложенной Уотсоном и Криком.

Строение ДНК сегодня настолько широко известно, что достаточно дать только самое простое ее описание. Остов молекулы составляют остатки пятичленного сахара дезокси-рибозы и фосфатные остатки, соединенные друг с другом. К каждому сахарному остатку присоединено по одному азотистому основанию, которых в ДНК встречается четыре вида.

Первые два (аденин и гуанин) относятся к так называемым тгуриновым основаниям, а два вторых (цитозин и тимин) - к пиримидиновым основаниям.

Между каждым из оснований, входящих в пару, возникают слабые по своей энергии так называемые водородные связи. Между тимином и аденином их образуется две, а между гуанином и цитозином - три. Но хотя эти связи и слабые, молекула ДНК становится вполне стабильной. В силу того, что вдоль оси молекулы ДНК располагается огромное число пар оснований (сотни и тысячи таких пар), суммарная энергия связи двух нитей ДНК оказывается значительной.

В конце 1953 г. Уотсон и Крик, проанализировав результаты, полученные химиками (Эрвином Чаргаффом и другими) и физиками (в основном рентгеноструктурщиками Морисом Уилкинсом и Розалиндой Франклин), пришли к выводу, что две нити молекулы ДНК только тогда могут приблизиться на расстояние, позволяющее возникнуть водородным связям (а это расстояние вполне определенное и не превышает двух ангстрем), если напротив аденина поместится тимин, а напротив гуанина - цитозин, да если к тому же обе нити ДНК будут антипараллельны.

Последнее замечание имеет глубокий смысл и связано с расположением молекул в сахаро-фосфатном каркасе нитей-ДНК. Оказалось, что остатки фосфорной кислоты, расположенные по обе стороны от молекулы сахара-дезоксирибозы, присоединяются всегда к разным атомам углерода сахара. Так как эти атомы имеют свои номера с первого по пятый (ведь дезоксирибоза - пятичленный, или пятиатомный сахар), то и получается, что предшествующий сахару фосфат присоединяется к атому углерода, имеющему номер 3' (три-штрих), а последующий - к атому углерода 5 (пять-штрих). Значок «штрих» у этих атомов ставят для того, чтобы отличать атомы углерода сахарного остатка от атомов углерода, входящих в состав азотистых оснований (в них есть свои атомы углерода под номером 3 и 5, но уже обозначаемые без штрихов). С помощью этих значков удается точно пронумеровать все атомы в нуклеотидах, составляющих ДНК. Таким образом, мы можем не только точно указать номера всех атомов в ДНК, но еще и указать направление одной нити. Его обозначают чаще всего для краткости как: 5' → 3'.

Когда Уотсон и Крик уже догадались, что спираль ДНК может 'быть стабильной, только если напротив аденилового нуклеотида поместить тимидиловый, а напротив гуанилового цитидиловый, им пришлось долго помучиться, прежде чем они нашли верное решение. Чтобы представлять себе точную пространственную картину сложнейшей молекулы ДНК, авторы изготовили так называемые шариковые модели Сахаров, фосфатов, оснований. Размеры каждого из атомов, слагающих эти молекулы, были физикам известны, расстояния между атомами и углы, образующиеся между ними, также были установлены, и Уотсон и Крик начали лепить каркасы молекул, пристраивая шарики нужного размера к стержням нужной длины, повернутым к тому же на нужный угол.

Когда подготовительная работа была окончена, и Уотсон и Крик собрали модели нуклеотидов, они начали пристраивать один нуклеотид к другому. Задача заключалась в том, чтобы, по крайней мере, по две водородные связи могли возникнуть между двумя нуклеотидами. Для этого нужно было, чтобы расстояния между атомами, объединяемыми водородной связью, были строго определенным. Такие комбинации возникали, как уже говорилось, только в двух парах: аденин + тимин и гуанин +ЦИТ03ИН.

Все шло нормально до тех пор, пока Уотсон и Крик прикладывали друг к другу отдельные нуклеотиды. Стоило собрать их в цепи, в нити, как вся стройность нарушалась. Одна цепь смещалась относительно другой цепи. И, лишь когда Уотсон догадался перевернуть одну цепь вверх ногами, все стало на свои места: расстояния между атомами стали приемлемыми для возникновения водородных связей. Так стало ясно, что нити в ДНК антипараллельны. Одна идет в направлении 3' →5'-, а вторая от 5' к 3'- атому.

Наличие водородных связей между основаниями, да и верность всей картины, нарисованной Уотсоном и Криком, затем были строго подтверждены многими физико-химическими исследованиями, и сейчас ни у кого не вызывает сомнения, что ДНК устроена точно так, как предсказали Уотсон и Крик. Обоим ученым и Морису Уилкинсу, сделавшему основные рентгеноструктурные снимки ДНК для анализа ее структуры, была присуждена Нобелевская премия. Некоторое время наличие антипараллельности нитей ДНК мало волновало ученых. Но чем дальше, тем в большей мере выявляется роль этого правила.

Как мы увидим из дальнейшего рассказа, во многих процессах, связанных с ДНК (при размножении клеток, при возникновении перестроек хромосом и т.д.), с ней взаимодействуют многочисленные ферменты.

Одни присоединяются к ДНК чтобы произвести удвоение молекул, другие разрывают одну из нитей. Но каждый фермент всегда точно узнает начало и конец нити, ее направление и взаимодействует только с определенным атомом в определенной нити ДНК. Фермент, ведущий репликацию ДНК, никогда не будет этого делать в направлении от б'-атома к 3-атому, а только от 3' к 5'. Некоторые нуклеазы (ферменты, разрывающие сахаро-фосфатный остов ДНК) разрезают ДНК вблизи 3'-атома, а другие только около 5'. Более того, некоторые ферменты делают это перед нужным атомом, а другие только позади его. Структура ДНК оказалась важнейшим свойством наследственных молекул.


Информация о работе «Успехи в изучении материальных основ наследственности»
Раздел: Биология
Количество знаков с пробелами: 31888
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
30364
0
0

... Все это говорит о том, что диагностика, лечение и профилактика наследственных и врожденных заболеваний и пороков - одна из самых актуальных задач медицинской генетики. В развитых странах большинство современных подходов к ее решению базируется на результатах молекулярно-генетических исследований, объединенных в самый крупный в истории человечества международный биологический проект "Геном человека ...

Скачать
22626
0
0

... существование является естественный отбор. Этим термином Дарвин назвал "сохранение благоприятных индивидуальных различий и изменений и уничтожение вредных". Борьба за существование и естественный отбор на основе наследственной изменчивости является, по Дарвину, основными движущими силами (факторами) эволюции органического мира. Индивидуальные наследственные уклонения, борьба за существование и ...

Скачать
41151
0
0

... генетического кода, осуществление искусственного синтеза гена, развитие учения о биосфере и ее эволюции). Успехи в познании молекулярных основ наследственности, возникновение генной инженерии и других достижений биологической науки ставят серьезные социальные и этические проблемы. От выработки правильных мировоззренческих и социально-гуманистических позиций ученых будет зависеть судьба новых ...

Скачать
69877
0
4

... живые организмы-и удивительное многообразие генов, кодирующих эти белки. В геноме каждого человека есть какие-то области, определяющие его индивидуальность. Некоторые гены человека отличаются от генов крысы всего несколько нуклеотидами-знаками генетического кода. Другие гены у них разные, но одинаковые у двух людей. Изменчивость, связанная с существованием генов , подобных генам группы крови у ...

0 комментариев


Наверх