8. Реакционная способность веществ
Число известных в природе и технике химических процессов очень велико. Одни из них, например, окисление бронзы на воздухе, протекают веками, другие — горение бензина — очень быстро. Разложение же взрывчатых веществ происходит в миллионные доли секунды. При промышленном производстве химических продуктов очень важно знать закономерности протекания реакций во времени, т. е. зависимость их скорости и выхода продукта от температуры, давления, концентрации реагентов и примесей.
Изучением скорости и особенностей протекания химических реакций занимается химическая кинетика. Основополагающим для химической кинетики является представление о том, что исходные вещества, вступающие в химическую реакцию, чрезвычайно редко непосредственно превращаются в ее продукты. В большинстве случаев реакция проходит ряд последовательных и параллельных стадий, на которых образуются и расходуются промежуточные вещества. Число последовательных стадий может быть очень велико — в цепных реакциях их десятки и сотни тысяч. Время жизни промежуточных веществ весьма разнообразно: одни вполне стабильны, другие существуют в равновесном состоянии доли секунды. Изучение скорости протекания химических процессов показало, что химические реакции протекают тем быстрее, чем выше температура, давление и концентрация реагентов.
На скорость некоторых химических реакций можно влиять присутствием небольшого количества определенных веществ, которые сами в реакции участия не принимают. Вещества эти называются катализаторами. Катализаторы бывают положительными, ускоряющими реакцию, и отрицательными — замедляющими ее. Каталитическое ускорение химической реакции называется катализом и является приемом современной химической технологии (производство полимерных материалов, синтетического топлива и др.). Считается, что удельный вес каталитических процессов в химической промышленности достигает 80%. Благодаря катализу существенно повысилась эффективность экономики химической промышленности, поскольку ускорение химических реакций заметно влияет на снижение издержек производства.
9. Атомно-молекулярное учение
Ведущей идеей атомно-молекулярного учения, составляющего фундамент современной физики, химии и естествознания, является идея дискретности (прерывности строения) вещества. Вещество не заполняет целиком занимаемое им пространство, оно состоит из отдельных, находящихся на очень малом расстоянии друг от друга частиц, называемых молекулами. Молекула — это наименьшая частица данного вещества, обладающая его химическими свойствами. Свойства молекулы определяются ее составом и химическим строением.
Каждая молекула, в свою очередь, состоит из атомов. Атом — наименьшая частица химического элемента, входящая в состав молекул простых и сложных веществ. Химические свойства элемента определяются строением его атомов. Число видов молекул исчисляется количеством возможных соединений атомов (порядка миллиона), число атомов равно числу химических элементов (116, о чем уже было сказано выше).
Атомы разных наименований веществ различаются атомной массой. При обычных условиях атомы отдельно существовать не могут. Ввиду их способности соединяться, одноименные атомы образуют молекулы элементов, а разноименные — молекулы соединений. Атомы элементов не меняются в результате химического процесса. Молекулы при любой химической реакции изменяются.
Атом сложен по своему строению. С открытием радиоактивности в самом конце XIX века представление о неделимости атома изменилось. Было доказано, что атомы веществ имеют сложное строение, и что все химические изменения вызываются преимущественно действием электрических сил. Атомы всех элементов являются системами, образующимися из так называемых элементарных частиц — протонов, электронов, нейтронов. Атомы одного и того же элемента имеют ядро, содержащее одинаковое число протонов. Атомы разных элементов различаются между собой числом протонов и их расположением.
Согласно электронной теории строения вещества, атом любого элемента состоит из электрически положительно заряженного атомного ядра, состоящего из протонов и нейтронов. Вокруг ядра, подобно планетам Солнечной системы, обращаются электроотрицательно заряженные электроны ("электронная оболочка"), которые по сравнению с ядром почти не имеют массы. Атом в целом является электрически нейтральным — заряд ядра атома равен заряду электронной оболочки, т. е. число электронов оболочки равно числу протонов ядра атома. Электроны вращаются вокруг ядра атома по определенным энергетически уравновешенным орбитам.
Таким образом, определение атома, приведенное выше, следует уточнить. Согласно современным представлениям, атом— это электронейтральная частица, состоящая из положительно заряженного атомного ядра и отрицательно заряженных электронов.
Молекулы, находясь в непрерывном движении, сталкиваются друг с другом электронными оболочками. Т электронные оболочки молекул отталкиваются, то они при столкновении отскакивают. Если соударения сильные, то может высвободиться достаточное количество энергии для перегруппировки электронов в столкнувшихся молекулах. При этом происходит формирование нового набора связей между атомов, т. е. образование новых соединений. Так, согласно атомно-молекулярного учения, происходят химические реакции.
Учение о строении атома сыграло колоссальную роль в химии и физике XIX века. На основе атомной модели вскрыты глубинные принципы периодического изменения свойств химических элементов и развита теория Периодической системы Д.И. Менделеева. Решающее значение здесь имело установление закономерностей формирования электронных конфигураций (оболочек) по мере роста заряда атомного ядра. Современная формулировка периодического закона Д.И. Менделеева такова: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядер их атомов.
Периодический закон и Периодическая система элементов Д.И. Менделеева (см. таблицу) позволили химии стать истинной наукой. Химия перестала быть описательной, экспериментальной научной дисциплиной. С открытием периодического закона в ней стало возможным научное предвидение. Периодический закон и Периодическая система ускорили развитие учения о строении атома, что привело к открытию атомной энергии и использованию ее для нужд человечества. Периодический закон сыграл решающую роль в развитии ряда смежных с химией естественных наук.
С учетом данных периодической системы элементов решаются современные задачи химической науки и промышленности. Успешно ведутся новых полимерных и полупроводниковых материалов, жаропрочных сплавов, веществ с заданными свойствами. Решаются другие задачи, в том числе и задачи охраны окружающей среды, освоения космоса и т. д.
Применение атомно-молекулярного учения позволяет дать толкование многим положениям, изложенным выше, достигнутым экспериментально. Согласно данной теории, можно констатировать:
а) основой любого вещества являются атомы;
б) элементы — это вещества, состоящие из одинаковых молекул, которые, в свою очередь, состоят из одного или нескольких одинаковых атомов (газообразные элементы обычно имеют двухатомные, металлы — одноатомные молекулы);
в) соединения — это вещества, состоящие из одинаковых молекул, каждая из которых состоит из разных атомов;
г) смеси — это вещества, состоящие из разных молекул;
д) аморфные вещества — это вещества с неупорядоченным расположением атомов и молекул;
е) кристаллические вещества — вещества с упорядоченным, периодическим расположением в пространстве атомов в виде кристаллической решетки.
Следует сказать, что большое число веществ, имеющих кристаллическое строение, состоит не из молекул, а из электроположительных ионов. Ионы — это электрически заряженные частицы — атомы или атомные группы, потерявшие или присоединившие к себе некоторое количество электронов. Положительно заряженные ионы называются катионами, отрицательно заряженные — анионами. Химические соединения при этом называются ионными соединениями.
Из атомно-молекулярного учения следует, что при каждой химической реакции сначала молекулы реагирующих веществ распадаются на атомы, а затем свободные атомы соединяются в новые молекулы. При этом, подчеркнем еще раз, атомы элементов не меняются, изменяются только молекулы участвующих в реакциях веществ. Химическое соединение элементов объясняется способностью атомов одного элемента соединяться с одним или несколькими атомами другого элемента. Эта способность к соединяемости, как уже говорилось, называется валентностью. Электронная теория строения вещества говорит о том, что соединяться могут только такие элементы, атомы которых имеют незаполненные внешние электронные орбиты (валентные сферы), обладающие определенной валентностью и вследствие чего проявляющие неустойчивость и стремление к упорядочению.
Существует большое разнообразие типов химического взаимодействия веществ. Однако характерным для них является перестройка электронных оболочек связываемых между собой атомов. В результате перестройки происходит обобществление электронов соединяемых элементов, а система в целом приходит в устойчивое положение. Межатомное взаимодействие, сопровождающееся перестройкой валентных электронных оболочек атомов и обобществлением электронов, называют химической (или ковалентной) связью.
Исследование радиоактивности химических элементов привело к открытию изотопов. С современной точки зрения, изотопы — это разновидности атомов одного и того же химического элемента: у них разная атомная масса, но одинаковый заряд ядра. Ядра таких элементов содержат одинаковое число протонов, но разное число нейтронов и занимают одно и то же место в периодической системе элементов. Почти все элементы имеют два или более изотопов. Например, водород — два, кислород — три, железо — четыре и т. д. Только примерно 24 элемента не имеют изотопов. Изотопы применяют в ядерной технике как конструкционный материал в качестве ядерного горючего в термоядерном синтезе. Радиоактивные изотопы широко используются в качестве источников излучения, в технике меченых атомов и т. д.
10. Химическая технология. Химическая промышленность
Химическая технология — прикладная научная дисциплина о процессах, методах и средствах переработки сырья в конечный химический продукт. Основная задача химической технологии — оптимальное сочетание в единой технологической системе разнообразных химических преобразований с физико-химическими и механическими процессами типа измельчения твердых материалов, фильтрования, воздействия высоких или низких температур, электрических полей и т. п.
Для решения задач химической технологии используют достижения всех разделов химии, физики, биологии, кибернетики, экономики. Химические технологии классифицируются по сырью (технология нефти, пластмасс), по виду товара (технология удобрений, красителей и т. п.), по группам элементов (технология щелочных металлов, технология тяжелых металлов и т. п.), по типам химических процессов (технология хлорирования и др.).
Химическая технология является научной базой химической промышленности. Химическая промышленность в целом — одна из крупнейших отраслей промышленности — сложная производственная система, состоящая из 15 специализированных отраслей. 11 отраслей из 15 организованы в химическую промышленность, 4 — в нефтехимическую.
В химическую промышленность входят:
Горнохимическая промышленность.
Основная химия.
Промышленность химических волокон.
Промышленность синтетических смол и пластических масс.
Промышленность пластмассовых изделий.
Лакокрасочная промышленность.
Промышленность химических реактивов и особо чистых веществ.
Промышленность синтетических красителей.
Химико-фотографическая промышленность.
Промышленность бытовой химии.
Другие отрасли (производство химпоглотителей, кремнийорганических соединений и других продуктов).
В нефтехимическую промышленность входят:
Производство синтетического каучука.
Производство продуктов основного органического синтеза.
Сажевая промышленность.
Резино-асбестовая промышленность.
Химическая промышленность характеризуется тесными связями со всеми отраслями народного хозяйства благодаря широкому ассортименту производимой ею продукции. Эта область производства отличается высокой материалоемкостью. Материальные и энергетические затраты в производстве продукции могут составлять от 2/3 до 4/5 себестоимости конечного продукта.
Развитие химической технологии идет по пути комплексного использования сырья и энергии, применения непрерывных и безотходных процессов с учетом экологической безопасности окружающей среды, применения высоких давлений и температур, достижений автоматизации и кибернетизации.
Выше были изложены основные представления о химии, ее законах, месте в человеческой цивилизации. В заключение следует еще раз подчеркнуть, что химия — "палка о двух концах". С одной стороны, это благо для человека, без которого немыслимо дальнейшее развитие общества, с другой — бедствие для окружающей среды. Очевидно, что идеал покорения природы, сопутствовавший научно-технической революции в XIX веке, должен быть коренным образом пересмотрен, что предполагает формирование экологического сознания у всех людей, молодого поколения в первую очередь. Молодым предстоит решать трудные задачи ограждения природы от негативного воздействия человека — во избежание глобальной экологической катастрофы.
Список литературы
1. Чанышев А.Н. Курс лекций по древней философии. М., 2008
2 Азерников В.З. Неслучайные случайности. Рассказы о великих открытиях и выдающихся ученых. М., 2006
3. Бернал Дж. Наука в истории общества. М., 2007
4. Юкава X. Лекции по физике. М., 2006
5. Александров Г.Ф. Концепции современного естествознания. М., 2007
6. Кудрявцев П.С. Современное естествознание. Курс лекций. М., 2007
... инерциальных системах отсчета. Пространственно-временной континуум – неразрывная связь пространства и времени и их зависимость от системы отсчета. Тема 11. Основные концепции химии 1. Химия как наука, ее предмет и проблемы Важнейшим разделом современного естествознания является химия. Она играет большую роль в решении наиболее актуальных и перспективных проблем современного общества. К ...
... предмета. Такие идеи для естествознания весьма удачно сформулировали в двадцати фразах современные американские физики Роберт Хейзен и Джеймс Трефил. Первые семь из них общие для естествознания, а остальные относятся к его отраслям. Вот эти великие научные истины. · Вселенная регулярна и предсказуема. · Все движения можно описать одним набором законов (имеются в виду три закона Ньютона ...
... , или концепция биогенеза). В XIX веке ее окончательно опроверг Л. Пастер, доказав, что появление жизни там, где она не существовала, связано с бактериями (пастеризация – избавление от бактерий). 3. Концепция современного состояния предполагает, что Земля и жизнь на ней существовали всегда, причем в неизменном виде. 4. Концепция панспермии связывает появление жизни на Земле с ее занесением из ...
0 комментариев