2. Клонирование животных
В своем эксперименте Кэмпбелл и его коллеги извлекли из эмбриона овцы на ранней стадии развития (на стадии эмбрионального диска) клетку и вырастили культуру клеток, то есть добились того, что клетка размножилась в искусственной питательной среде. Полученные генетически идентичные клетки (клеточная линия) сохранили тотипонентность. Затем ученые взяли яйцеклетку овцы-реципиента, тщательно удалили из нее весь хромосомный материал и добились ее слияния с тотипотентной клеткой из культуры. Полученные синтетические эмбрионы выращивали до стадии морулы-бластулы, а затем имплантировали в матку овцы. В результате удалось вырастить нескольких нормальных ягнят, которые были генетически идентичны.
Рис. 1. Методика, с помощью которой Кэмпбелл и его коллеги клонировали овец. Из клеток эмбрионального диска получили устойчивые культуры клеток. Из ооцитов-реципиентов удаляли часть цитоплазмы вместе с метафазной пластинкой и индуцировали слияние таких безъядерных | |
ооцитов с клеткой из тотипотентной клеточной линии. Полученные таким образом эмбрионы временно помещались в овцу-реципиента. через неделю проверяли уровень их развития. Наконец, морулы и бластоцисты имплантировались другим овцам, где и проходил весь онтогенез. |
В принципе, после того, как получена устойчивая линия тотипонентных клеток, ничто не мешает вносить в них генетические изменения. Например, перестраивая или удаляя отдельные гены, можно создавать трансгенные линии овец и других сельскохозяйственных животных. Однако прежде чем эта технология найдет практическое применение, предстоит решить еще множество проблем.
Пока число клонированных животных очень мало по сравнению с числом исходных эмбрионов, из клеток которых удавалось получить культуру. Многие клетки погибали, не успев достичь стадии бластоцисты. Не ясно, вызван ли высокий процент неудач разнообразными вредными факторами, воздействующими на клетку при манипуляциях с нею, или гетерогенностью самой клеточной линии. Последнее менее вероятно, поскольку процент успешных случаев не меняется при пересевах культуры. Для прояснения этого вопроса необходимо исследовать другие тотипотентные клеточные линии.
Результативность пересадки ядра в яйцеклетку и ее последующее благополучное развитие зависит от адекватного перепрограммирования ядра донора. Макромолекулы (белки и транспортная РНК) ооцита отвечают за его развитие только в течение сравнительно короткого времени (между двумя клеточными делениями), и чем этот период короче, тем меньше остается времени для перепрограммирования. Клетки более зрелых эмбрионов требуют большего времени для перепрограммирования, поэтому вероятность успеха при их использовании снижается. Определенную роль играет также совместимость ядра донора и цитоплазмы реципиента, все еще слабо изученная.
Успех пересадки клеточных ядер связан по крайней мере с двумя факторами. Во-первых, овулировавшие ооциты являются лучшими реципиентами, чем зиготы, либо потому, что у неоплодотворенных яйцеклеток остается больше времени для перепрограммирования, либо потому, что их цитоплазма является более подходящей. Возможно, в цитоплазме ооцита есть элементы, необходимые для перестройки хромосом и активации генома и исчезающие после оплодотворения либо потому, что они каким-то образом связаны с реплицирующейся ДНК, либо в результате запрограммированного распада. Во-вторых, клетки с ядрами донора, взятыми на стадиях G1 или G0 клеточного цикла, развиваются гораздо лучше, чем клетки с ядрами со стадий S или G2. Интуитивно это кажется понятным, ведь перепрограммировать открытый реплицирующийся геном проще.
Клонирование животных возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo подобно тому, как в природе появляются однояйцевые близнецы. Клонирование животных достигается в результате переноса ядра из дифференцированной клетки в неоплодотворённую яйцеклетку, у которой удалено собственное ядро (энуклеированная яйцеклетка) с последующей пересадкой реконструированной яйцеклетки в яйцевод приёмной матери. Однако долгое время все попытки применить описанный выше метод для клонирования млекопитающих были безуспешными. Значительный вклад в решение этой проблемы был сделан шотландской группой исследователей из Рослинского института и компании "PPL Therapeuticus" (Шотландия) под руководством Яна Вильмута (Wilmut). В 1996 году появились их публикации по успешному рождению ягнят в результате трансплантации ядер, полученных из фибробластов плода овцы, в энуклеированные ооциты. [2] В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997, когда родилась овца по кличке Долли — первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы. [3] В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова), а также взятых у мёртвых, замороженных[4] на несколько лет, животных. Появление технологии клонирования животных вызвало не только большой научный интерес, но и привлекло внимание крупного бизнеса во многих странах. Подобные работы ведутся и в России, но целенаправленной программы исследований не существует. В целом технология клонирования животных ещё находится в стадия развития. У большого числа полученных таким образом организмов наблюдаются различные патологии, приводящие к внутриутробной гибели или гибели сразу после рождения.
В апреле 2008 года Южнокорейские таможенники приступили к дрессировке семи щенков, клонированных из соматических клеткок лучшего корейского розыскного пса породы канадский лабрадор-ретривер. По мнению южнокорейских ученых, 90 % клонированных щенков будут удовлетворять требованиям для работы на таможне, тогда как лишь менее 30 % обычных щенков проходят тесты на профпригодность.
Клонирование с целью воссоздания вымерших видов
Клонирование может быть использовано для воссоздания естественых популяций животных, вымерших по вине человека. Несмотря на наличие определённых проблем и трудностей, первые результаты в данном направлении уже имеются.
Клонирование бантенгов
В 2004 году на свет появилась пара бантенгов (диких быков, обитавших в Юго-Восточной Азии), клонированных из клеток животных, умерших более 20 лет назад. Два бантенга были клонированы из уникального "замороженного зоопарка" Сан-Диего, созданного еще до того, как люди поняли, что клонирование вообще возможно. Произведшая клонирование американская компания Advanced Cell Technology сообщила, что в нем использовались клетки животных, которые умерли в 1980 году, не оставив потомства.
Бантенгов клонировали, перенеся их генетический материал в пустые яйцеклетки обычных домашних коров; из 16 зародышей до рождения дожили только два. [7] [8]
Императорский дятел
В последний раз императорского дятла видели в Мексике в 1958 году. С тех пор орнитологи пытаются найти следы этой популяции, но безуспешно. Около десяти лет назад появились даже слухи, что птица еще живет на планете, но и они не подтвердились.
Зато в музеях остались чучела птицы. Научный сотрудник Дарвиновского музея Игорь Фадеев считает, что если операцию по выделению ДНК провести со всеми чучелами, которые находятся в разных странах мира, то дятла можно будет воскресить. В разных музеях мира на сегодняшний день осталось лишь десять чучел императорского дятла.
Если проект увенчается успехом, то в недалеком будущем на нашей планете, возможно, вновь появится императорский дятел. В Государственном Дарвиновском музее уверены, что последние методы молекулярной биологии позволяют выделить и воспроизвести ДНК этих птиц. [9]
Дронт
В июне 2006 года голландские учёные обнаружили на острове Маврикий хорошо сохранившиеся останки дронта - вымершей исторически недавно (в XVII веке) нелетающей птицы. Ранее наука не располагала останками птицы, в исчезновении которой, как всегда, виноват человек. Но теперь появилась определенная надежда на "воскресение" удивительного представителя пернатых. [10]
Клонирование гигантских птиц
Планы по клонированию исчезнувших гигантских птиц были поставлены под сомнение в результате исследований учёных Оксфордского университета. Выделив участки ДНК из останков вымерших птиц, ученые обнаружили, что их генетический материал настолько разрушен, что современная технология не позволяет провести полноценное клонирование. Цель научных работ состояла в возрождении вымерших несколько веков назад новозеландского страуса Моа, а также Мадагаскарского эпиорниса (птицы-слона).
Образцы ДНК были взяты из фрагментов тканей, сохранившихся в музеях. Однако ученые не смогли получить достаточную по своей длине цепочку ДНК, чтобы провести клонирование. Тем не менее, некоторые ученые считают, что в ближайшие годы будет разработана технология восстановления утраченных частей ДНК, путем вшивания туда "заплат" из ДНК близкородственных видов.
1970 - успешное клонирование лягушки[12]
1985 - клонирование костных рыб[13]
1996 — овечка Долли.
1997 — первая мышь.[14].
1998 — первая корова[15].
1999 — первый козёл[16].
2001 — первая кошка[17].
2002 — первый кролик[18].
2003 — первые бык[19], мул[20], олень[21].
2004 — первый опыт клонирования с коммерческими целями (кошки).[22]
2005 — первая собака (афганская борзая по кличке Снуппи).[23]
2006 — первый хорёк
2007 - вторая собака [24]
2008 — третья собака (лабрадор по кличке Чейс). Клонирована по государственному заказу[25]. Начало коммерческого клонирования собак[26]
3. Методы клонирования животных
Последние десятилетия XX века ознаменовались бурным развитием одной из главных ветвей биологической науки -- молекулярной генетики. Уже в начале 70-х годов ученые в лабораторных условиях начали получать и клонировать рекомбинантные молекулы ДНК, культивировать в пробирках клетки и ткани растений и животных. Возникло новое направление генетики генетическая инженерия. На основе ее методологии начали разрабатываться различного рода биотехнологии, создаваться генетически измененные организмы (ГМО). Появилась возможность генной терапии некоторых заболеваний человека, а последнее десятилетие XX века ознаменовалось еще одним важным событием -- достигнут огромный прогресс в клонировании животных из соматических клеток.
Особенно большой резонанс у мировой общественности получили исследования шотландских ученых из Рослинского Университета, которым удалось из клетки молочной железы беременной овцы получить генетически точную ее копию. Клонированная овца по кличке Долли нормально развивалась и произвела на свет сначала одного, а затем еще трех нормальных ягнят. Вслед за этим появился ряд новых сообщений о воспроизведении генетических близнецов коров, мышей, коз, свиней из соматических клеток этих животных. У приматов, в частности, у обезьян пока не удалось получить клоны с использованием клеток взрослого организма, плода или даже эмбриональных стволовых клеток.
Тем не менее работы в этом направлении активно ведутся. В прошлом году появилось сообщение о клональном размножении потомства приматов путем деления зародыша. Американским исследователям удалось получить генетически идентичные эмбрионы обезьяны резус путем разделения бластомеров зародыша на стадии деления. Из эмбриона родилась вполне нормальная обезьянка Тетра.
Такой тип клонирования обеспечивает генетически идентичное потомство, и в результате можно получить двойню, тройню и более генетических близнецов. Это позволяет проводить теоретические исследования по эффективности новых методов терапии тех или иных заболеваний, появляется возможность повторять научные эксперименты на абсолютно генетически идентичном материале. Имплантируя зародыши последовательно одной и той же суррогатной самке, можно исследовать влияние ее организма на развитие плода [31].
Разработанные методы клонирования животных пока еще далеко не совершенны. В процессе экспериментов наблюдается высокая смертность плодов и новорожденных. Еще не ясны многие теоретические вопросы клонирования животных из отдельной соматической клетки.
Тем не менее успех, достигнутый в клонировании овцы и обезьян, показал теоретическую возможность создания генетических копий также человека из отдельной клетки, взятой из какого-либо его органа. Многие ученые с энтузиазмом восприняли идею клонирования человека.
... воздействий начинают развиваться без оплодотворения. Однако это развитие, названное партеногенезом, рано останавливалось: партеногенетические эмбрионы погибали еще до вылупления личинок из яиц. Но начало клонированию животных было положено. В последствии (в 30ых годах) удалось подобрать термическое воздействие, которое одновременно стимулировало неоплодотворенное яйцо к развитию и блокировало ...
... от его соматической клетки, не будет обладать душой. Продолжается бурное обсуждение проблемы клонирования («выращивания живых копий») человека. Мнения ученых во многом схожи: клонирование животных запрещать нельзя, но пока в этом много неясного. Проблема еще и в том, что сейчас не только отсутствует какая-либо рациональная этика, но, наоборот, решаются частные вопросы о том, что есть этично, ...
... ум человека преодолеет препятствия, если они ему встретятся в процессе исследований, как это было с тутовым шелкопрядом. Быть может, предложенную выше схему использования не самих клонированных животных, а их потомства в будущем было бы целесообразно применить с некоторыми модификациями к крупным сельскохозяйственным животным. Как известно, сперма многих племенных быков уже заморожена на долгие ...
... чтобы принести пользу больным или раненным людям, потому что нельзя забирать жизнь у одного, чтобы подарить её другому. 4. Клонирование: причины и проблемы 4.1 Клонирование растений Клонирование растений, в отличие от клонирования животных, является обычным процессом, с которым сталкивается любой цветовод или садовод. Ведь часто растение размножают отростками, черенками, усиками и ...
0 комментариев