2.3. Методы анализа.

Пробы из колб отбирали один раз в сутки и проводили измерения рН, биомассы, концентрации глюкозы, ЭДТА и аммония.

Биомассу определяли спектрофотометрически на приборе Specol 221 (Germany) при 546 нм, после подкисления анализируемой пробы 5% раствором НNO3 до рН=2,0 для растворения солей, выпадающих в осадок в процессе культивирования. Содержание биомассы рассчитывали на основании оптической плотности клеточной суспензии используя раннее построенную калибровочную кривую.

Концентрацию ЭДТА определяли высокоэффективной жидкостной хроматографией на хроматографе HPLC (Waters. Great Britan), оснащенном колонкой Nukleosil 100 (Machery und Nagel, Germany) при 285 нм. В качестве элюента использовали раствор, содержащий Fe(NO3)3* 9H2O 0,5 г/л, бромид тетрабутиламмония 0,4 г/л, HNO3 (65%) 0,8 мл, рН 2,1. Концентрацию ЭДТА рассчитывали, используя калибровочную кривую

Концентрацию глюкозы определяли энзиматически с использованием реактива Глюкоза ФС “ДДС” (“Диакон”). Принцип метода: глюкозооксидаза катализирует окисление β-D-глюкозы кислородом воздуха с образованием эквимолярных количеств глюколактона и перекиси водорода. Пероксидаза катализирует окисление хромогенных субстратов перекисью водорода в присутствии фенола с образованием окрашенного соединения, интенсивность окраски которого прямо пропорциональна концентрации глюкозы в пробе и измеряется фотометрически при длине волны 500 нм. Состав реагента: буферно-ферментный раствор, который содержащит калий фосфорнокислый -250 ммоль/л, фенол - 5 ммоль/л, 4-аминоантипирин - 0,5 ммоль/л, глюкозооксидазу - 10 000 Е/л, пероксидазу - 1000 Е/л. Пробы центрифугировали при 8 000 об/мин в течение 6 минут. Затем отбирали 20 мкл надосадочной жидкости и добавляли 2 мл реагента. Пробы перемешивали и инкубировали при комнатной температуре в течение 20 минут. Затем измеряли оптическую плотность при 500 нм. Содержание глюкозы определяли по калибровочному графику.

Содержание ионов аммония определяли потенциометрическим методом с помощью ионселективного электрода “Эком-NH4”. Метод анализа заключается в измерении величины равновесного потенциала ионселективного электрода, погруженного в раствор анализируемого иона. Потенциал измеряют относительно электрода сравнения, с помощью иономера Экотест - 120 (ИЭЛРАН НПП ЭКОНИКС). Погружали в раствор электрод “Эком-NH4” и электрод сравнения и измеряли значение равновесного потенциала.

2.3.1. Вычисление энергетического выхода роста штамма LPM-4

Энергетический выход роста штамма LPM-4 вычисляли на основании теории материально-энергетического баланса роста микроорганизмов. Согласно этой теории доступными называются электроны, которые акцептируются свободным кислородом при окислении органического материала с образованием углекислого газа и воды. [29].

Содержание доступных электронов (ДЭ) в органических соединениях удобно выражать в расчёте на один атом углерода, то есть как степень восстановлености углерода (γ).

Для соединения СНрОnNq величина степени восстановленности углерода вычисляется по формуле:

g=4+p-2n-3q

Цифра 4 означает число ДЭ углеродного атома, к ней прибавляются ДЭ водорода, число которых равно числу p, приходящихся на один атом углерода. Из этой суммы вычитаются электроны энергетически обесцененные кислородом. Их число равно удвоенному числу атомов кислорода n , приходящихся на один атом углерода, так как у кислорода валентность равна - 2. Из полученной разницы вычитается утроенное число атомов азота q , так как валентность азота равна - 3, а энергетическое состояние электронов, связанных с азотом, не меняется в процессе роста.

Приведём уравнение количественной связи энергетического баланса с показателем материального баланса, как выход по субстрату Ys .

Энергетический выход (η) характеризует долю энергии субстрата, перешедшую в биомассу.

h = gв sв/ gs ss× Ys ,

где gв- восстановленность углерода в биомассе ;

gs- восстановленность углерода в субстрате ;

σs – доля (по массе) углерода в органическом субстрате;

σв – доля (по массе) углерода в биомассе;

gв sв/ gs ss - отношение энергосодержания равных по весу количеств биомассы и субстрата;

gв sв = 2, для бактерий не синтезирующих липиды;

Ys - выход клеток по массе, г/г;

Выход клеток по массе Y:

Yx/s= Х / S ,

где Х- концентрация биомассы, г/л;

S- количество потребленного субстрата, г/л.

Выход клеток по массе из ЭДТА (YЭДТА) рассчитывали как отношение биомассы, образованной из ЭДТА, к количеству потребленной ЭДТА. А выход клеток по массе из глюкозы рассчитывали как отношение биомассы, образованной из глюкозы, к количеству потребленной глюкозы.

Теоретический предел для энергетического выхода роста h=1, так как в биомассе не может быть больше энергии, чем в использованном субстрате.

Расчет величины η для ЭДТА:

С10Н16О8N2

γ= (4*10 +16- 2*8- 3*2) / 10= 3,4

М(ЭДТА)= 292

М(углерода) = 120

292 – 100%

120 – δ

δ = 0,410

γδ= 3,4* 0,410= 1,4

h = Usbδb / γ sδs) = Us (2/1,4)

Расчет η для глюкозы:

С6Н12О6 СН2О

 γ= 4+2-2= 4

М(глюкоза) =180

М(углерода) = 72

180 – 100%

72 – δ

 δ= 0,4

γδ= 4* 0,4= 1,6

η = Υs (2/1,6)

2.3.2.     Вычисление удельной скорости роста штамма LPM-4

Удельная скорость роста m:

m = (ln x2/x1)/(t2-t1) ,

где х2 – концентрация биомассы в конечный момент времени, мг/л;

x1 - концентрация биомассы в начальный момент времени, мг/л;

(t2-t1) – промежуток времени, в течение которого возросла биомасса, ч.


Глава 3. Результаты и их обсуждение

Известно, что бактериальный штамм LPM-4 характеризуется уникальной потребностью в ЭДТА для роста клеток и не растет на средах в отсутствие ЭДТА. Совместную ассимиляцию ЭДТА и глюкозы штаммом LPM-4 можно рассматривать как процесс кометаболизма, при котором ЭДТА является ростовым субстратом, а глюкоза - косубстратом, ее метаболизм зависит от присутствия ЭДТА.

Опыт проводили в два этапа:

1)   Исследование влияния степени деградации ЭДТА на ассимиляцию глюкозы бактериальным штаммом LPM-4;

2)   Исследование способности штамма LPM-4 к ассимиляции ЭДТА и глюкозы в процессе длительного культивирования с добавлением субстрата.


Информация о работе «Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4»
Раздел: Биология
Количество знаков с пробелами: 73207
Количество таблиц: 22
Количество изображений: 1

0 комментариев


Наверх