37. Развитие представлений о природе теплоты. Вещественная и кинетическая теории теплоты.
Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдаемые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Такие явления называются тепловыми. Тепловые явления играют огромную роль в жизни людей, животных и растений. От температуры окружающей среды зависит возможность жизни на Земле. Люди добились относительной независимости от окружающей среды после того как научились добывать и поддерживать огонь. Многие философы древности рассматривали огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предпринимались попытки связать теплоту с движением, так как было замечено, что при соударении тел или трении друг о друга они нагреваются.
Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр, и появилась возможность количественного исследования тепловых процессов и свойств макросистем.
Вновь был поставлен вопрос о том, что же такое теплота. Наметились две противоположные точки зрения. Согласно одной из них — вещественной теории тепла, теплота рассматривалась как особого рода невесомая "жидкость", способная перетекать из одного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.
Согласно другой точке зрения, теплота — это вид внутреннего движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура.
Таким образом, представление о тепловых явлениях и свойствах связывалось с атомистическим учением древних философов о строении вещества. В рамках таких представлений теорию тепла первоначально называли корпускулярной, от слова "корпускула" (частица). Ее придерживались ученые: Ньютон, Гук, Бойль, Бернулли.
Большой вклад в развитие корпускулярной теории тепла сделал великий русский ученый М.В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории он объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о существовании "наибольшей или последней степени холода", когда движение частичек вещества прекращается. Благодаря работам Ломоносова среди русских ученых было очень мало сторонников вещественной теории теплоты.
Но все же, несмотря на многие преимущества корпускулярной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того как экспериментально было доказано сохранение теплоты при теплообмене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости — теплорода. В вещественной теории было введено понятие теплоемкости тел и построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и сейчас.
С помощью корпускулярной теории теплоты не удалось получить столь важные для физики количественные связи между величинами. В частности, не удалось объяснить, почему теплота сохраняется при теплообмене. В те времена не была ясна связь между механической характеристикой движения частиц — их кинетической энергией и температурой тела. Понятие энергии еще не было введено в физику. Поэтому, вероятно, на основе корпускулярной теории не могли быть достигнуты в XVIII в. те немалые успехи в развитии теории тепловых явлений, какие дала простая и наглядная теория теплорода.
К концу XVIII в. вещественная теория теплоты начала сталкиваться со все большими трудностями и к середине XIX в. потерпела полное и окончательное поражение. Большим числом разнообразных опытов было показано, что "тепловой жидкости" не существует. При трении можно получить любое количество теплоты: тем больше, чем более длительное время совершается операция трения. С другой стороны, при совершении работы паровыми машинами пар охлаждается и теплота исчезает.
В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество теплоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энергии. Было установлено, что теплота представляет собой форму энергии.
18. Развитие представлений о природе света
Основные законы логики известны еще с древних веков. Так, Платон (430 г. до н.э.) установил законы прямолинейного распространения и отражения света, Аристотель (350 г. до н.э.) и его ученики изучали преломление света.
Первые представления о природе света возникли у древних греков и римлян. В дальнейшем, по .мере изобретения и усовершенствования различных оптических инструментов, эти представления развивались и трансформировались. Скорость света была определена только в 1676 г. Оларфом Ремером из наблюдений затмений спутников Юпитера (с=3*108 см/с). В конце XVII в. на основе многовекового опыта и развития представлений о свете возникли две теории света: корпускулярная (И. Ньютон) и континуальная, т.е. волновая (Р.Гук и Х-Гюйгенс).
Согласно корпускулярной теории (теории истечения), свет представляет собой поток частиц (корпускул), испускаемых светящимися телами и летящих по прямолинейным траекториям.
Движение световых корпускул Ньютон подчинил сформулированным им законам механики. Так, отражение света понималось аналогично отражению упругого шарика при ударе о плоскость, где также соблюдались законы равенства углов падения и отражения. Преломление света Ньютон объяснял притяжением корпускул преломляющей средой, в результате чего скорость корпускул меняется при переходе из одной среды в другую. Из теории Ньютона следовало, что скорость распространения света в среде должна быть всегда больше скорости его распространения в вакууме.
Согласно волновой теории, развитой на основе аналогии оптических и акустических явлений, свет представляет собой упругую волну, распространяющуюся в особой среде - эфире. Эфир заполняет все мировое пространство, пронизывает все тела и обладает механическими свойствами - упругостью и плотностью. Согласно Гюйгенсу, большая скорость распространения света обусловлена особыми свойствами эфира.
Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн. Результирующая волна, распространяющаяся дальше, возникает вследствие наложения и интерференции всех волн от этих вторичных элементарных источников.
Волновая теория приводит к выводу, отличному от вывода теории Ньютона. По теории Гюйгенса скорость распространения света в среде должна быть всегда меньше скорости его распространения в вакууме. Наука о свете накапливала экспериментальные данные, свидетельствующие о взаимосвязи световых, электрических и магнитных явлений. Максвелл в 70-х годах прошлого столетия выдвинул электромагнитную теорию света, согласно которой свет представляет собой электромагнитные волны.
В конце XIX в. Лоренцем была предложена электронная теория света, согласно которой диэлектрическая проницаемость зависит от длины волны падающего света. Теория Лоренца ввела представление об электронах, колеблющихся внутри атома, и позволила объяснить явления испускания и поглощения света веществом.
Обе теории основывались на гипотезе об эфире, только “упругий эфир” был заменен “эфиром электромагнитным” (теория Максвелла), или “неподвижным эфиром” (теория Лоренца), и поэтому их применение встретило ряд затруднений.
В 1900 г. немецкий физик М.Планк выдвинул гипотезу, согласно которой изучение электромагнитного поля происходит не непрерывно, а дискретно, т.е. определенными порциями (квантами), энергия которых определяется частотой.
В 1905 г. А. Эйнштейн, исследуя проблемы фотоэффекта, распространил идею квантирования также и на поглощение веществом энергии излучения светового потока. Напомним, что внешний фотоэффект состоит в вырывании электронов с поверхности металла под действием света. Согласно Эйнштейну, при облучении вещества световым потоком электроны вещества поглощают энергию света порциями. Позднее им было введено понятие "световых квантов" – фотонов.
Фотон, являясь квантом электромагнитного поля, существует только в движении со скоростью света. У фотона нет массы покоя.
Квантовое представление о свете хорошо согласуется с законами излучения и поглощения света, законами взаимодействия света с веществом. Дальнейший путь развития теории привел к современным представлениям о двойственной корпускулярно - волновой природе света.
8. Донаучное бытовое и мифологическое познание.
На начальных стадиях познания (мифология, натурфилософия) оба этих вида наук и культур не разделялись. Однако постепенно каждая из них разрабатывала свои принципы и подходы. Разделению этих культур способствовали и разные цели: естественные науки стремились изучить природу и покорить ее; гуманитарные своей целью ставили изучение человека и его мира. Считается, что методы естественных и гуманитарных наук также преимущественно различны: рациональный в естественных и эмоциональный (интуитивный, образный) в гуманитарных. Справедливости ради надо заметить, что резкой границы здесь нет, поскольку элементы интуиции, образного мышления являются неотъемлемыми элементами естественнонаучного постижения мира, а в гуманитарных науках, особенно в таких как история, экономика, социология, нельзя обойтись без рационального, логического метода. В античную эпоху преобладало единое, нерасчлененное знание о мире (натурфилософия). Не существовало проблемы разделения естественных и гуманитарных наук и в эпоху средневековья (хотя в то время уже начался процесс дифференциации научного знания, выделение самостоятельных наук). Тем не менее, для средневекового человека Природа представляла собой мир вещей, за которыми надо стремиться видеть символы Бога, т.е. познание мира было прежде всего познанием божественной мудрости. Познание было направлено не столько на выявление объективных свойств явлений окружающего мира, сколько на осмысление их символических значений, т.е. их отношения к божеству [2].
... сущность теории химической эволюции и биогенеза. Опишите историю открытия и изучения клетки. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ Билет № 30 Назовите и охарактеризуйте междисциплинарные естественные науки. Сформулируйте третий закон механического движения Ньютона. Каким ...
... вещей (»арден 1987: 53-68, Назаретян 1991: 60, Абдеев 1994: 150- 160). Атрибутивная концепция информации - информация как мера упорядоченности структур и их взаимодействий на всех стадиях организации материи (Абдеев 1994: 162). Одна из самых сложных проблем современного естествознания - функционирование отражения в неживом мире (существует ли в неживом мире опосредующее звено между ...
... , или концепция биогенеза). В XIX веке ее окончательно опроверг Л. Пастер, доказав, что появление жизни там, где она не существовала, связано с бактериями (пастеризация – избавление от бактерий). 3. Концепция современного состояния предполагает, что Земля и жизнь на ней существовали всегда, причем в неизменном виде. 4. Концепция панспермии связывает появление жизни на Земле с ее занесением из ...
... галактик и Вселенной. Материальные системы микро-, макро- и мегамира различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются. Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро- и мегамира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях ...
0 комментариев