2. Клетка – единая система сопряженных функциональных единиц
В начале нашего изложения в согласии с клеточной теорией мы обсуждали первый ее постулат: клетка – наименьшая единица живого. Однако мы знаем о сложности строения этой «единицы», которая состоит, содержит в себе множество типов внутриклеточных структур, выполняющих разнообразные функции. При этом каждый компонент «специализирован» на выполнение одной собственной группы функций, и другие компоненты не могут работать «по совместительству», не могут принять на себя основные функции других внутриклеточных структур. Важно отметить, что каждая из функций является обязательной, без выполнения которой клетка не может существовать. Все это в значительной степени напоминает многоклеточный организм, который также является особой живой системой, обеспечивающей свое собственное существование и воспроизведение. Все тело организма может быть подразделено на ряд подсистем или систем, обеспечивающих отправление целого ряда организменных функций: пищеварительная, выделительная, мышечная, нервная, половая система и др. И эти функции выполняются отдельными или рядом органов: кишечник, почки, мозг и т.д. И в данном примере эти системы в основном монофункциональны и незаменимы. В общей системе организма как целого, все они играют главные, а не подчиненные роли. Жизнь организма становится невозможной при выключении любой из этих систем.
Формально любую клетку можно «разложить» на ряд как бы независимых структурных и функциональных компонентов, выполняющих свои специфические функции. Так, например, эукариотические клетки принято разделять на ядра и цитоплазму. В цитоплазме, в свою очередь выделяют гиалоплазму или основную плазму клетки, а также целый ряд структур – органелл, выполняющих свои отдельные специфические функции. Это мембранные органеллы: одномембранные и двумембранные. К немембранным органеллам нужно отнести рибосомы и систему цитоскелетных фибрилл. Кроме того вся поверхность клетки покрыта цитоплазматической мембраной, тесно функционально связанной как с вакуолярной системой, с элементами цитоскелета, так и с гиалоплазмой.
Но каждая из этих морфологических «отдельностей» представляет собой новую систему или подсистему функционирования. Так клеточное ядро является системой хранения, воспроизведения и реализации генетической информации. Гиалоплазма – система основного промежуточного обмена; рибосомы – элементарные клеточные машины синтеза белка; цитоскелет – опорно-двигательная система клетка; вакуолярная система – система синтеза и внутриклеточного транспорта белковых биополимеров и генезиса многих клеточных мембран; митохондрии – органеллы энергообеспечения клетки за счет синтеза АТФ, пластиды растительных клеток – система синтеза АТФ и фотосинтеза, плазматическая мембрана – барьерно-рецепторно-транспортная система клетки.
Аналоги этих систем есть и у прокариот: это – плазматическая мембрана, которая кроме пограничной роли участвует в процессах синтеза АТФ и фотосинтеза, цитозоль, рибосомы, и даже элементы цитоскелета.
Важно подчеркнуть, что все эти подсистемы клетки образуют некое сопряженное единство, находятся во взаимозависимости. Так, например, нарушение функций ядра сразу сказывается на синтезе клеточных белков, нарушение работы митохондрий прекращает все синтетические и обменные процессы в клетке, разрушение элементов цитоскелета прекращает внутриклеточный транспорт и т.д. Как в часовом механизме повреждение любой его части приводит к остановке всей системы в целом.
3. Гомологичность клеток
Термин гомологичность означает сходство по коренным свойствам и отличие по второстепенным. Так, например, руки человека, крыло птицы, передняя нога лошади гомологичны, сходны не только по плану строения, но и по своему происхождению. Подобно этому можно говорить, что разные клетки организмов растительного или животного происхождения сходны, гомологичны.
Это обобщение, сделанное еще Т. Шванном, нашло свое подтверждение и развитие в современной цитологии, использующей новые достижения техники, такие, как электронный микроскоп. Гомологичность строения клеток наблюдается внутри каждого из типов клеток: прокариотическом и эукариотическом. Хорошо известно разнообразие клеток как бактериальных, так и высших организмов. Такое одновременное сходство строения и разнообразие форм определяются тем, что клеточные функции можно грубо подразделить на две группы: обязательные и факультативные. Обязательные функции, направленные на поддержание жизнеспособности своих клеток, осуществляются специальными внутриклеточными структурами.
Так, у всех прокариотических клеток плазматическая мембрана не только ограничивает собственно цитоплазму, но и функционирует как структура, обеспечивающая активный транспорт веществ и клеточных продуктов, как система окислительного фосфорилирования, как источник образования клеточных бактериальных стенок. ДНК нуклеоида бактерий и синезеленых водорослей обеспечивает генетические свойства клеток и т.д. Рибосомы цитоплазмы – единственные аппараты синтеза полипептидных цепей, - также обязательный компонент цитоплазмы прокариотической клетки. Разнообразие же прокариотических клеток – это результат приспособленности отдельных бактериальных одноклеточных организмов к условиям среды обитания. Прокариотические клетки могут отличаться друг от друга толщиной и устройством клеточной стенки,,складчатостью плазматической мембраны, количеством и структурой цитоплазматических выростов этой мембраны, количеством и свойствами внутриклеточных вакуолей и мембранных скоплений и др. Но «общий план» строения прокариотических клеток остается постоянным.
Та же картина наблюдается и для эукариотических клеток. При изучении клеток растений и животных бросается в глаза разительное сходство не только в микроскопическом строении этих клеток, но и в деталях строения их отдельных компонентов. У эукариот так же, как у прокариот, клетки отделены друг от друга или от внешней среды активной плазматической мембраной, которая может принимать участие в выделении веществ из клетки и построении внеклеточных структур, что особенно выражено у растений. У всех эукариотических клеток от низших грибов до позвоночных всегда имеется ядро., принципиально сходное по построению у разных организмов. Строение и функции внутриклеточных структур также в принципе определяется гомологичностью общеклеточных функций, связанных с поддержанием самой живой системы.
Одновременно мы видим и разнообразие клеток даже в пределах одного многоклеточного организма. Так, например, по форме мало похожи друг на друга такие клетки, как мышечная или нервная. Современная цитология показывает, что различие клеток связано со специализацией их функций, с развитием особых функциональных клеточных аппаратов. Так, если рассматривать мышечную клетку, то в ней кроме общеклеточных структур встречаются в большом количестве фибриллярные компоненты, обеспечивающие специальную функциональную нагрузку, характерную для этой клетки.
В нервной клетке кроме общеклеточных компонентов можно отметить специфические черты: наличие длинных и разветвленных клеточных отростков, оканчивающихся специальными структурами передачи нервного импульса; своеобразную композицию в цитоплазме из элементов эндоплазматической сети, большое количество микротрубочек в клеточных отростках. Вся совокупность этих отличительных черт нервной клетки связана с ее специализацией – передачей нервного импульса. Однако и микротрубочки и микрофиламенты можно обнаружить практически в любых эукариотических клетках, хотя они будут и не так обильны. Например, филаменты, сходные по химизму с актиновыми фибриллами мышечных клеток, имеются в цитоплазме фибробластов. В ней же обнаруживаются и микротрубочки. Следовательно, и микрофиламенты и микротрубочки представляют собой обязательные общеклеточные структуры. Сейчас известно, что микрофиламенты клеток представлены актином, что указывает на их общеклеточное значение – обеспечивать подвижность клеток. В мышечных клетках эта функция стала главной, поэтому так сильно в них выражен сократительный аппарат.
Структурное разнообразие клеток многоклеточного организма можно объяснить отличием их специальных функций, осуществляющихся данной клеткой как бы на фоне общих, обязательных клеточных функций.
Другими словами, гомологичность в строении клеток определяется сходством общеклеточных функций, направленных на поддержание жизни самих клеток и на их размножение. Разнообразие же в строении клеток многоклеточных – результат функциональной специализации.
... смерти. Несмотря на то, что учеными давно уже было накоплено немало данных о развитии и строении животных и растений, только в 1839 были сформулированы основные концепции клеточной теории и началось развитие современной цитологии. Клетки – это самые мелкие единицы живого, о чем наглядно свидетельствует способность тканей распадаться на клетки, которые затем могут продолжать жить в «тканевой» ...
... , свидетельствующие о теоретической возможности перерождения - нормализации опухолевых клеток. Было отмечено, что при введении некоторых веществ (масляной кислоты, диметилсульфоксида, витамина А и др.) в клеточную культуру опухоли, клетки по некоторым биохимическим признакам становились похожими на нормальные, однако при удалении этих веществ клетки вновь приобретали опухолевые черты. Беатриса ...
... . Растущие в процессе их дифференцировки отростки не проникают в тела других клеток, но устанавливают с ними контакт, так что индивидуальность каждой клетки сохраняется. 1. Основные положения нейронной теории Вся нервная система построена из нервной ткани. Нервная ткань состоит из нейронов и нейроглии. Нейроглия обеспечивает существование и специфические функции нейронов, выполняет опорную, ...
... буржуа. М. 1987. Гвардини Р. Конец Нового времени//"Вопросы философии", 1990. Легенда о докторе Фаусте. М. 1978. I. АНТРОПОЛОГИЧЕСКАЯ ТРАДИЦИЯ В КУЛЬТУРОЛОГИИ 1. КУЛЬТУРОЛОГИЯ - ИНТЕГРАЦИЯ ЗНАНИЙ О КУЛЬТУРЕ Антропологическая традиция в культурологии — традиция исследования культуры в культурной и социальной антропологии. Культурология как интегративная наука формируется на стыке целого ряда ...
0 комментариев