1.3. Задача формирования баз знаний

При всей претенциозности своего названия, инженерия знаний является дисциплиной сугубо прозаической, в ее задачу входит разработка практически полезных программ для слабо "математизированных" областей человеческой деятельности. Главным аргументом в пользу плодотворности такого подхода является факт существования в реальной жизни института экспертов - классных профессионалов, способных решать плохо формализуемые задачи из той или иной проблемной области.

С точки зрения инженерии знаний, в любой прикладной программе (по-крайней мере теоретически) можно выделить компоненту, содержащую знания о проблемной области. Именно эта компонента, именуемая базой знаний, определяет практическую ценность программы. Построение базы знаний требует специальных изысканий в проблемной области, в то время как остальные блоки программы находятся полностью в ведении программиста.

В настоящее время известны четыре основных способа представления знаний, из которых можно конструировать "гибридные" способы представления знаний.

·          Продукционные системы

·          Семантические сети

·          Фреймы

·          Логические исчисления

·          Комбинированные способы представления знаний

·          Модели проблемных областей


2. Распознавание образов и машинный перевод

 

2.1 Понятие образа

Образ, класс – классификационная группировка в системе классификации, объединяющая определенную группу объектов по некоторому признаку. Образное восприятие мира – одно из свойств живого мозга, позволяющее разобраться в бесконечном потоке воспринимаемой информации и сохранять ориентацию в разрозненных данных о внешнем мире. Воспринимая внешний мир, мы всегда производим классификацию информации, т. е. разбиваем их на группы похожих, но не тождественных явлений. Это свойство мозга позволяет сформулировать такое понятие, как образ.

Способность восприятия внешнего мира в форме образов позволяет с определенной достоверностью узнавать бесконечное число объектов на основании ознакомления с конечным их числом, а объективный характер основного свойства образов позволяет моделировать процесс их распознавания.


2.2 Проблема распознавания образов

Распознавание образов – это задача идентификации объекта или определения каких-либо его свойств по его изображению (оптическое распознавание) или аудиозаписи (акустическое распознавание). В процессе биологической эволюции многие животные с помощью зрительного и слухового аппарата решили эту задачу достаточно хорошо. Создание искусственных систем с функциями распознавания образов остаётся сложной технической проблемой.

Рис. 2.1. Пример объектов обучения.

В целом проблема распознавания образов (ПРО) состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и другими реакциями - на все объекты отличимых образов. Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов. В качестве объектов обучения могут быть либо картинки (рис. 2.1), либо другие визуальные изображения (буквы, цифры). Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает машине правило классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.

Круг задач, которые могут решаться с помощью распознающих систем, чрезвычайно широк. Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи классификации сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными задачами. Прежде чем начать анализ какого-либо объекта, нужно получить о нем определенную, упорядоченную информацию.

Выбор исходного описания объектов является одной из центральных задач проблемы распознавания образов. При удачном выборе исходного описания (пространства признаков) задача распознавания может оказаться тривиальной и, наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработку информации, либо вообще к отсутствию решения.


2.5 Обучение, самообучение и адаптация

Обучение – это процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные совокупности внешних воздействий, а адаптация – это подстройка параметров и структуры системы с целью достижения требуемого качества управления в условиях непрерывных изменений внешних условий. Все картинки, представленные на рис. 2.1, характеризуют задачу обучения. В каждой из этих задач задается несколько примеров (обучающая последовательность) правильно решенных задач. Если бы удалось подметить некое всеобщее свойство, не зависящее ни от природы образов, ни от их изображений, а определяющее лишь их способность к разделимости, то наряду с обычной задачей обучения распознаванию с использованием информации о принадлежности каждого объекта из обучающей последовательности тому или иному образу, можно было бы поставить иную классификационную задачу – так называемую задачу обучения без учителя. Задачу такого рода на описательном уровне можно сформулировать следующим образом: системе одновременно или последовательно предъявляются объекты без каких-либо указаний об их принадлежности к образам. Входное устройство системы отображает множество объектов на множество изображений и, используя некоторое заложенное в нее заранее свойство разделимости образов, производит самостоятельную классификацию этих объектов. После такого процесса самообучения система должна приобрести способность к распознаванию не только уже знакомых объектов (объектов из обучающей последовательности), но и тех, которые ранее не предъявлялись. Процессом самообучения некоторой системы называется такой процесс, в результате которого эта система без подсказки учителя приобретает способность к выработке одинаковых реакций на изображения объектов одного и того же образа и различных реакций на изображения различных образов. Роль учителя при этом состоит лишь в подсказке системе некоторого объективного свойства, одинакового для всех образов и определяющего способность к разделению множества объектов на образы. Таким объективным свойством является свойство компактности образов. Взаимное расположение точек в выбранном пространстве уже содержит информацию о том, как следует разделить множество точек. Эта информация и определяет то свойство разделимости образов, которое оказывается достаточным для самообучения системы распознаванию образов.

Обучением обычно называют процесс выработки в некоторой системе той или иной реакции на группы внешних идентичных сигналов путем многократного воздействия на систему внешней корректировки. Такую внешнюю корректировку в обучении принято называть " поощрениями" и " наказаниями". Механизм генерации этой корректировки практически полностью определяет алгоритм обучения. Самообучение отличается от обучения тем, что здесь дополнительная информация о верности реакции системе не сообщается.

Адаптация – это процесс изменения параметров и структуры системы, а возможно, и управляющих воздействий на основе текущей информации с целью достижения определенного состояния системы при начальной неопределенности и изменяющихся условиях работы.

Возможен способ построения распознающих машин, основанный на различении каких-либо признаков подлежащих распознаванию фигур. В качестве признаков могут быть выбраны различные особенности фигур, например, их геометрические свойства (характеристики составляющих фигуры кривых), топологические свойства ( взаимное расположение элементов фигуры) и т.п. Известны распознающие машины, в которых различение букв или цифр производится, по так называемому “методу зондов” (рис. 2.2), т.е. по числу пересечений контура фигуры с несколькими особым образом расположенными прямыми.

Рис. 2.2 Схема расположения зондов для распознавания цифр.

 Если проектировать цифры на поле с зондами, то окажется, что каждая из цифр пересекает вполне определенные зонды, причем комбинации пересекаемых зондов различны для всех десяти цифр. Эти комбинации и используются в качестве признаков, по которым производится различение цифр. Такие машины успешно справляются, например, с чтением машинописного текста, но их возможности ограничены тем шрифтом (или группой сходных шрифтов), для которого была разработана система признаков. Работа по созданию набора эталонных фигур или системы признаков должна производиться человеком. Качество работы машины, т. е. надежность “узнавания” предъявляемых фигур определяется качеством этой предварительной подготовки и без участия человека не может быть повышено. Описанная машина не являются обучающейся машиной.

Моделирование процесса обучения подразумевает обучение, которому не предшествует сообщение машине каких-либо сведений о тех образах, распознаванию которых она должна научиться; само обучение заключается в предъявлении машине некоторого конечного числа объектов каждого образа. В результате обучения машина должна оказаться способной узнавать сколь угодно большое число новых объектов, относящихся к тем же образам. Таким образом, имеется в виду следующая схема экспериментов:

 а) никакие сведения о подлежащих классификации образах в машину заранее не вводятся;

 б) в ходе обучения машине предъявляется некоторое количество объектов каждого из подлежащих классификации образов и (при моделировании процесса обучения “с учителем”) сообщается, к какому образу относится каждый объект;

 в) машина автоматически обрабатывает полученную информацию, после чего

 г) с достаточной надежностью различает сколь угодно большое число новых, ранее ей не предъявлявшихся объектов из образов.

Машины, работающие по такой схеме, называются узнающими машинами.



Информация о работе «Интелектуальные системы и технологии в экономике»
Раздел: Информатика, программирование
Количество знаков с пробелами: 70075
Количество таблиц: 0
Количество изображений: 9

Похожие работы

Скачать
205571
3
0

... ЄС. Програми залучення учасників в електронну комерцію Национальное участие в программах ес Национальное участие в программах Сообщества рассматриваются как необходимая деятельность, требующая большой подготовки и организации. Сообщество создало сеть корреспондентов или информационных центров в различных странах. Таким образом оно обеспечивает переда­чу на национальных языках информации и ...

Скачать
37333
0
0

... .Увеличение дефицита товаров и ограничения предпринимательства только малыми пред-ми. Перестройка административной в рыночную системы.Переход к рынку можно поделить на 3 стадии:1.Подготовительная-конкуренция пред-ий,установление провособственности,ликвидация структур управ-ленческого аппарата в экономике.2.Реформирование экономики-созда-ние денежно-кредитной системы,создание экономического ...

Скачать
197852
13
5

... по взаимной адаптации внутренних хозяйственных механизмов и национальных законодательств. ЗАКЛЮЧЕНИЕ   В данной курсовой работе был сделан анализ существующей денежно-кредитной системы в Республике Туркменистан. На основании этого анализа можно сделать следующие выводы: Правительство Республики придерживается политики нейтралитета во внешне-экономической деятельности. ...

Скачать
24196
0
0

... государствами и т.д.). Иммиграция населения играла важнейшую роль в заселении некоторых частей света и формировании населения многих стран мира. Как и всякое социальное явление, миграция имеет свои плюсы и минусы. Эмиграция уменьшает давление на рынок труда страны-экспортера, сокращая безработицу. Трудовые мигранты, заботясь о благополучии своих семей, как правило, пересылают значительную часть ...

0 комментариев


Наверх