5. Описание системы
Далее описывается модель автоматического распознавания и синтеза речи. Описывается механизм ввода звука в нейросеть, модель синтеза речи, модель нейросети, проблемы, возникшие при построении модели.
5.1 Ввод звука
Ввод звука осуществляется в реальном времени через звуковую карту или через файлы формата Microsoft Wave в кодировке PCM (разрядность 16 бит, частота дискретизации 22050 Гц). Работа с файлами предпочтительней, так как позволяет многократно повторять процессы их обработки нейросетью, что особенно важно при обучении.
Для того, чтобы звук можно было подать на вход нейросети, необходимо осуществить над ним некоторые преобразования. Очевидно, что представление звука во временной форме неэффективно. Оно не отражает характерных особенностей звукового сигнала. Гораздо более информативно спектральное представление речи. Для получения спектра используется набор полосовых фильтров, настроенных на выделение различных частот, или дискретное преобразование Фурье. Затем полученный спектр подвергается различным преобразованиям, например, логарифмическому изменению масштаба (как в пространстве амплитуд, так и в пространстве частот). Это позволяет учесть некоторые особенности речевого сигнала – понижение информативности высокочастотных участков спектра, логарифмическую чувствительность человеческого уха, и т.д.
Как правило, полное описание речевого сигнал только его спектром невозможно. Наряду со спектральной информацией, необходима ещё и информация о динамике речи. Для её получения используются дельта-параметры, представляющие собой производные по времени от основных параметров.
Полученные таким образом параметры речевого сигнала считаются его первичными признаками и представляют сигнал на дальнейших уровнях его обработки.
Процесс ввода звуковой информации изображен на рис. 1:
Рис 1. Ввод звука
При обработке файла по нему перемещается окно ввода, размер которого равен размеру окна дискретного преобразования Фурье (ДПФ). Смещение окна относительно предыдущего положения можно регулировать. В каждом положении окна оно заполняется данными (система работает только со звуком, в котором каждый отсчет кодируется 16 битами). При вводе звука в реальном режиме времени он записывается блоками такого же размера.
После ввода данных в окно перед вычислением ДПФ на него накладывается окно сглаживания Хэмминга:
, (1)
N – размер окна ДПФ
Наложение окна Хэмминга немного понижает контрастность спектра, но позволяет убрать боковые лепестки резких частот (рис 2), при этом особенно хорошо проявляется гармонический состав речи.
без окна сглаживания с окном сглаживания Хэмминга
Рис 2. Действие окна сглаживания Хэмминга (логарифмический масштаб)
После этого вычисляется дискретное преобразование Фурье по алгоритму быстрого преобразования Фурье ([ХХ]). В результате в реальных и мнимых коэффициентах получается амплитудный спектр и информация о фазе. Информация о фазе отбрасывается и вычисляется энергетический спектр:
(2)
Так как обрабатываемые данные не содержат мнимой части, то по свойству ДПФ результат получается симметричным, т.е. E[i] = E[N-i]. Таким образом, размер информативной части спектра NS равен N/2.
Все вычисления в нейросети производятся над числами с плавающей точкой и большинство сигналов ограничены диапазоном [0.0,1.0], поэтому полученный спектр нормируется на 1.00. Для этого каждый компонент вектора делится на его длину:
, (3)
(4)
Информативность различных частей спектра неодинакова: в низкочастотной области содержится больше информации, чем в высокочастотной. Поэтому для предотвращения излишнего расходования входов нейросети необходимо уменьшить число элементов, получающих информацию с высокочастотной области, или, что тоже самое, сжать высокочастотную область спектра в пространстве частот. Наиболее распространенный метод (благодаря его простоте) – логарифмическое сжатие (см. [3], “ Non-linear frequency scales”):
, (5)
f – частота в спектре, Гц,
m – частота в новом сжатом частотном пространстве
5.2 Наложение первичных признаков на вход нейросети
После нормирования и сжатия спектр накладывается на вход нейросети. Входы нейросети не выполняют никаких решающих функция, а только передают сигналы дальше в нейросеть. Выбор числа входов – сложная задача, потому что при малом размере входного вектора возможна потеря важной для распознавания информации, а при большом существенно повышается сложность вычислений (только при моделировании на PC, в реальных нейросетях это неверно, т.к. все элементы работают параллельно).
При большой разрешающей способности (большом числе) входов возможно выделение гармонической структуры речи и как следствие определение высоты голоса. При малой разрешающей способности (малом числе) входов возможно только определение формантной структуры.
Как показало дальнейшее исследование этой проблемы, для распознавания уже достаточно только информации о формантной структуре. Фактически, человек одинаково распознает нормальную голосовую речь и шепот, хотя в последнем отсутствует голосовой источник. Голосовой источник дает дополнительную информацию в виде интонации (изменением высоты тона на протяжении высказывания), и эта информация очень важна на высших уровнях обработки речи. Но в первом приближении можно ограничиться только получением формантной структуры, и для этого с учетом сжатия неинформативной части спектра достаточное число входов выбрано в пределах 50~100.
... задач за счет применения средств автоматизации, снижение затрат за счет сокращения штата сотрудников, привлекаемых к делопроизводству, поиску и сортировке управленческой документации за счет внедрения электронного документооборота и т.д.) Результаты второго рода могут быть измерены с помощью экономических показателей, находящихся в бухгалтерской отчетности. Доход третьего рода получают за счет ...
... уровня. В общем случае в качестве вариантов решений можно использовать классы стратегий, предлагаемых в экономической литературе. 16. Особенности проектирования интеллектуальной экономической информационной системы Проектирование ИИС начинается с обследования предметной области. Современные технологии такого обследования базируются на концепции и программных средствах реинжиниринга бизнес- ...
... МП к некритическому экстраполированию результата считается его слабостью. Сети РБФ более чувствительны к «проклятию размерности» и испытывают значительные трудности, когда число входов велико. 5. МОДЕЛИРОВАНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ПРОГНОЗИРОВАНИЯ СТОИМОСТИ НЕДВИЖИМОСТИ 5.1 Особенности нейросетевого прогнозирования в задаче оценки стоимости недвижимости Использование нейронных сетей можно ...
... информацию, находить в ней закономерности, производить прогнозирование и т.д. В этой области приложений самым лучшим образом зарекомендовали себя так называемые нейронные сети – самообучающиеся системы, имитирующие деятельность человеческого мозга. Область науки, занимающаяся построением и исследованием нейронных сетей, находится на стыке нейробиологии, математики, электроники и программирования ...
0 комментариев