2. Перспективы и тенденции развития AI
Сообщения об уникальных достижениях специалистов в области искусственного интеллекта (ИИ), суливших невиданные возможности, пропали со страниц научно-популярных изданий много лет назад. Эйфория, связанная с первыми практическими успехами в сфере ИИ, прошла довольно быстро, потому что перейти от исследования экспериментальных компьютерных моделей к решению прикладных задач реального мира оказалось гораздо сложнее, чем предполагалось. На трудности такого перехода обратили внимание специалисты всего мира, и после детального анализа выяснилось, что практически все проблемы связаны с нехваткой ресурсов двух типов: компьютерных (вычислительной мощности, емкости оперативной и внешней памяти) и людских (наукоемкая разработка интеллектуального ПО требует привлечения ведущих специалистов из разных областей знания и организации долгосрочных исследовательских проектов). К сегодняшнему дню ресурсы первого типа вышли (или выйдут в ближайшие пять-десять лет) на уровень, позволяющий системам ИИ решать весьма сложные для человека практические задачи. А вот с ресурсами второго типа ситуация в мире даже ухудшается - именно поэтому достижения в сфере ИИ связываются в основном с небольшим числом ведущих ИИ-центров при крупнейших университетах.
2.1 Нейронные сети
Это направление стабильно держится на первом месте. Продолжается совершенствование алгоритмов обучения и классификации в масштабе реального времени, обработки естественных языков, распознавания изображений, речи, сигналов, а также создание моделей интеллектуального интерфейса, подстраивающегося под пользователя. Среди основных прикладных задач, решаемых с помощью нейронных сетей, - финансовое прогнозирование, раскопка данных, диагностика систем, контроль за деятельностью сетей, шифрование данных. В последние годы идет усиленный поиск эффективных методов синхронизации работы нейронных сетей на параллельных устройствах.
2.2 Эволюционные вычисления
На развитие сферы эволюционных вычислений (ЭВ; автономное и адаптивное поведение компьютерных приложений и робототехнических устройств) значительное влияние оказали прежде всего инвестиции в нанотехнологии. ЭВ затрагивают практические проблемы самосборки, самоконфигурирования и самовосстановления систем, состоящих из множества одновременно функционирующих узлов. При этом удается применять научные достижения из области цифровых автоматов. Другой аспект ЭВ - использование для решения повседневных задач автономных агентов в качестве персональных секретарей, управляющих личными счетами, ассистентов, отбирающих нужные сведения в сетях с помощью поисковых алгоритмов третьего поколения, планировщиков работ, личных учителей, виртуальных продавцов и т. д. Сюда же относится робототехника и все связанные с ней области. Основные направления развития - выработка стандартов, открытых архитектур, интеллектуальных оболочек, языков сценариев/запросов, методологий эффективного взаимодействия программ и людей. Модели автономного поведения предполагается активно внедрять во всевозможные бытовые устройства, способные убирать помещения, заказывать и готовить пищу, водить автомобили и т. п. В дальнейшем для решения сложных задач (быстрого исследования содержимого Сети, больших массивов данных наподобие геномных) будут использоваться коллективы автономных агентов. Для этого придется заняться изучением возможных направлений эволюции подобных коллективов, планирования совместной работы, способов связи, группового самообучения, кооперативного поведения в нечетких средах с неполной информацией, коалиционного поведения агентов, объединяющихся "по интересам", научиться разрешать конфликты взаимодействия и т. п. Особняком стоят социальные аспекты - как общество будет на практике относиться к таким сообществам интеллектуальных программ.
2.3 Нечеткая логика
Системы нечеткой логики активнее всего будут применяться преимущественно в гибридных управляющих системах.
2.4 Обработка изображений
Продолжится разработка способов представления и анализа изображений (сжатие, кодирование при передаче с использованием различных протоколов, обработка биометрических образов, снимков со спутников), независимых от устройств воспроизведения, оптимизации цветового представления на экране и при выводе на печать, распределенных методов получения изображений. Дальнейшие развитие получат средства поиска, индексирования и анализа смысла изображений, согласования содержимого справочных каталогов при автоматической каталогизации, организации защиты от копирования, а также машинное зрение, алгоритмы распознавания и классификации образов.
2.5 Экспертные системы
Спрос на экспертные системы остается на достаточно высоком уровне. Наибольшее внимание сегодня привлечено к системам принятия решений в масштабе времени, близком к реальному, средствам хранения, извлечения, анализа и моделирования знаний, системам динамического планирования.
2.6 Интеллектуальные приложения
Рост числа интеллектуальных приложений, способных быстро находить оптимальные решения комбинаторных проблем (возникающих, например, в транспортных задачах), связан с производственным и промышленным ростом в развитых странах.
2.7 Распределенные вычисления
Распространение компьютерных сетей и создание высокопроизводительных кластеров вызвали интерес к вопросам распределенных вычислений - балансировке ресурсов, оптимальной загрузке процессоров, самоконфигурированию устройств на максимальную эффективность, отслеживанию элементов, требующих обновления, выявлению несоответствий между объектами сети, диагностированию корректной работы программ, моделированию подобных систем.
... их исследований - моделирование социального поведения, общения, человеческих эмоций, творчества. 3.2 Итоги и проблемы Проблемы ИИ, связанные с ресурсами Сообщения об уникальных достижениях специалистов в области искусственного интеллекта (ИИ), суливших невиданные возможности, пропали со страниц научно-популярных изданий много лет назад. Эйфория, связанная с первыми практическими успехами в ...
... и экзистенциального развития человека важны нравственные основания человеческой самости. При этом творчество – продолжение природы, оно не должно противоречить природе. «И здесь, – заявил Аркадий Викторович, – мы выходим не на искусственный интеллект, а на космический разум». Нужно отметить, что Марат Самирханович совершенно верно говорил о едином процессе, а если не едином, то не просто о ...
... о пределах разума компьютера, . скажет нам многое и о человеческом интеллекте" Неожиданный выход из данной дилеммы предложил известный польский писатель-фантаст и философ Станислав Лем, предположивший, что магистральным путем развития для компьютеров будет моделирование не интеллекта, а инстинктов и тропизмов. С его точки зрения, развитие искусственного интеллекта. Приходит в противоречие с одной ...
... создать эффективные программы в распознавании образов, в классификационных задачах и в обучении ЭВМ. Лингвопсихология Лингвопсихология является еще одной наукой, задействованной в процессе лингвистического обеспечения искусственной интеллекта. Данный термин образован по образцу многих уже устоявшихся терминов. Так, психолингвистика – исследование предмета лингвистики методами психологии (в ...
0 комментариев