4 Процессоры Pentium
В марте 1995 г. Intel объявила о поставке 66,60МГц версии МП, известного ранее как 586. Эти системы полностью совместимы с МП i86, 286, 386, 486. Новая Микросхема содержит около 3,1 млн. транзисторов и имеет 32-х разрядную адресную и 64-х шину данных, что позволяет обмен данными с системной платой со скоростью 528 Мб/с. В отличие от 486, при производстве которого использовалась КМОП технология, при производстве Pentium Intel применила 0.8 микронную Bi-CSOS технологию. Р166 имеет производительность около 112 MIPS. Суперскалярная архитектура содержит 2 пяти ступенчатых блока исполнения, работающих независимо, и обрабатывающих 2 инструкции за 1 такт синхронизации. Pentium имеет 2 разделённых кеша по 8Кб для команд и данных. Одним из наиболее интересных новшеств является небольшая кэш-память, называемая буфером меток переходов, который позволяет динамически предсказывать переходы в исполняемых программах. По скорости оперирования с плавающей точкой Pentium оставил далеко позади всех своих собратьев по классу. Это достигается благодаря реализации оптимизированных алгоритмов, а также спец. аппаратных блоков сложения, умножения и деления с 8-и ступенчатой конвейеризацией, что позволяет выполнять операции с плавающей точкой за 1 такт. В настоящее время выпускаются версии Pentium с внутренним умножением частоты в 1.5/2 раза (75/50, 90/60, 100/66, 120/60, 133/66). Для снижения рассеиваемой мощности с 13 до 4 Вт напряжение питания снижено до 3,3В. Три режима потребления рассчитаны на максимальный ток в 1A, 50мА, 100мкА. Кол-во выводов возросло до 296. Для производства кристалла стала использоваться 0.6 микронная Bi-CMOS технология. Кол-во транзисторов возросло до 3.3 млн.
1 ноября 1995 года Intel объявила о начале коммерческих поставок МП нового поколения P6, в основе которого лежит комбинация технологии многократного предела ветвления, анализ потоков данных и эмуляция выполняемых инструкций. В корпусе Микросхема размещаются 2 кристалла: 256/512Кб кэш-память 2-го уровня и сам МП. На кристалле процессора располагается 16Кб кеш 1-го уровня. В семейство Р6 входит МП с тактовыми частотами 200, 166, 150 МГц. Производительность Р6 - 200 по тесту производительности соответствует 366, т.e. этот МП превосходит свой аналог в RISC. Число транзисторов МП 5,5 млн. а кеш памяти 31 млн. При напряжении питания около 3В МП вместе с кеш памятью рассеивает 14Вт. Изделие выполнено в квадратном корпусе с 387 выводами. Архитектура Р6 позволяет объединять между собой множество МП создавая таким образом непревзойденную масштабируемость. Специально для Р6 Intel разработал 2 набора Микросхема для шины PCI. Развитие линии Р6 пойдет в направлении увеличения тактовой частоты и снижения размеров технических норм, а также увеличения емкость кэша 1-го уровня до 32Кб, кроме того предполагается совершенствование архитектуры с учетом технологии мультимедиа, в частности цифровой обработки видео. Совершенно новый и необычный МП Р7, совместно разработанный Intel и HP, появился в 1997 году. Он поддерживает длинные инструкции и имеет производительность 1млд. MIPS.
5 Производительность процессоров
До недавнего времени основной мерой производительности МП являлась их тактовая частота, однако по мере усложнения архитектуры (RISC-ядро, встроенный кеш, технология внутреннего умножения частоты) данный параметр работы МП хотя и остался одним из важнейших, но уже не был определяющим. В 1992 году Intel предложила индекс для оценки производительности своих МП iCOMP. Индекс представляет собой число, которое выражает производительность МП семейства i86. Производительность 486SX-25 принимается за 100. При вычислении индекса учитываются операции со следующими "взвешенными" компонентами: 16-разрядные целые 57%, 16-р вещественные 13%, 32-р целые 25%, 32-р вещественные 5%.
Таблица индексов iCOMP
Модель | iCOMP |
486sx2-50 | 180 |
486dx4-100 | 435 |
P60 | 510 |
P166 | 1308 |
6 Сопроцессоры
Важной характеристикой любого ПК является его быстродействие. Для ряда компьютерных задач одним из самых критичных параметров выступает скорость выполнения операций с плавающей точкой. Даже самые мощные МП тратят на такие вычисления много времени, поэтому вполне логично было создание для этой цели специальных устройств - Микросхема математического сопроцессора. До недавнего времени сопроцессор представлял собой специализированную микросхему, работающую во взаимодействии с МП. Данная Микросхема была предназначена только для выполнения мат. операций. Во всех МП Intell от 486DX и выше сопроцессор интегрирован на кристалле МП. С другой стороны, хотя и компьютер определяется как "тот, кто вычисляет", масса современных программных приложений вовсе не требует выполнения сложных мат. операций. Если не затрагивать специальных физических или математических задач моделирования, можно однозначно сказать о необходимости сопроцессора для работы с 3-хмерной графикой, издательскими пакетами, электронными таблицами и т.д. При работе же с БД или обычными текстовыми редакторами использование сопроцессор вовсе не обязательно. По некоторым оценкам только 1/3 пользователей эффективно используют математический сопроцессор.
Первым математическим сопроцессором для ПК IBM стал i8087 производства Intell, который появился в 1980 году. Со временем, помимо чисто Intell-x сопроцессоров, появились сопроцессор и ряда других фирм. CYRIX предлагал один из самых быстрых сопроцессоров, основанных на классической архитектуре. Причем гарантировалась полная совместимость с сопроцессорами Intell. Производительность этой микросхемы несколько выше потому, что все критичные по времени выполнения операции реализованы в данной микросхеме с использованием жесткой логики (аппаратный умножитель, отдельное арифметико-логическое устройство для вычисления мантиссы и т.д.). Повышение производительности особенно заметно при вычислении квадратного корня или тригонометрических функций. Он еще и точнее Intell-го.
Weitek была основана в 1981 году несколькими инженерами, покинувшими Intell. Выполнение простых операций с одинарной точностью на сопроцессоре Weitek происходит менее чем за 200 нс., тогда как сопроцессор, использующий классическую архитектуру, выполняет подобные операции за 1.5 мкс. Обращение к сопроцессору происходит как бы через ОЗУ. Таким образом, загрузив операнды в область памяти, соответствующей сопроцессору, следующей командой можно уже считывать результат. Применение сопроцессора Weitek имеет смысл только тогда, когда он поддерживается программным обеспечением. В связи с этим сопроцессор Weitek находит достаточно ограниченное применение.
Список литературы
1. Уинн Л. Рош «Библия по техническому обеспечению Уинна Роша»
2. Н.Н. Щелкунов, А.П. Дианов «Микропроцессорные средства и системы», 1989г
... . Регистры характеризуются числом битов, с которыми он может работать в единицу времени. Например, 16-битному необходим один или более регистров размерностью в 16-бит. История развития микропроцессоров – это история увеличения размеров их регистров и ширины шины. С каждым новым поколением микропроцессоров увеличивался размер регистров и шире становилась адресная шина. В результате персональные ...
... в офисе (1982-83) Целый ряд решений, которые приняли в начале 80-х тогдашние руководители IBM, оказали кардинальное влияние на весь последующий ход развития компьютерной индустрии. Сейчас можно судить и рядить, были то ошибки или гениальное провидение, но история не знает сослагательного наклонения, поэтому вопрос, "что было бы, если..." мы здесь обсуждать не будем. Важно одно: не замечать столь ...
... оснащать их дополнительными устройствами сотен различных производителей. Итак, после начала широкого внедрения персональных компьютеров в повседневную жизнь, продолжилось быстрое развитие вычислительной техники. Остановимся на наиболее важном элементе: микропроцессор – это эффективный с технологической и экономической точки зрения инструмент для переработки возрастающих потоков информации. Новое ...
... ; - показывать, за счет каких структурных особенностей достигается увеличение производительности различных вычислительных систем; с этой точки зрения, классификация может служить моделью для анализа производительности. 1.12 Классификация Дазгупты Одним из последних исследований по классификации архитектур, по-видимому, является работа С. Дазгупты, вышедшая в 1990 году. Автор ...
0 комментариев