Математичне моделювання економічних систем

10374
знака
21
таблица
17
изображений

Міністерство освіти і науки України

Черкаський національний університет імені Богдана Хмельницького

 

Факультет інформаційних технологій і

біомедичної кібернетики

РОЗРАХУНКОВА РОБОТА

з курсу „Математичне моделювання економічних систем”


студента 4-го курсу спеціальності

«інтелектуальні системи прийняття рішень»

Валяєва Олександра В’ячеславовича

Черкаси – 2006 р.


Зміст

 

Зміст

Завдання 1. Задача лінійного програмування

Завдання 2. Задача цілочислового програмування

Завдання 3. Задача дробово-лінійного програмування

Завдання 4. Транспортна задача

Завдання 5. Задача квадратичного програмування

Список використаної літератури


Завдання 1. Задача лінійного програмування

 

 Для заданої задачі лінійного програмування побудувати двоїсту задачу. Знайти розв’язок прямої задачі геометричним методом і симплекс-методом. Знайти розв’язок двоїстої задачі, використовуючи результати розв’язування прямої задачі симплекс-методом:

3. ,

 

Розв′язання геометричним методом

Побудуємо прямі, рівняння яких одержуються внаслідок заміни в обмеженнях знаків нерівностей на знаки рівностей.

I:

6 0

0 9

II:

0  -6

6 0

III:

0 4

4 0

Визначимо півплощини, що задовольняють нашим нерівностям.

Умовам невід’ємності  та  відповідає перша чверть.

Заштрихуємо спільну частину площини, що задовольняє всім нерівностям.

Побудуємо вектор нормалі .

Максимального значення функція набуває в точці перетину прямих I та II.

Знайдемо координати цієї точки.

 

Приведемо систему до канонічного вигляду

 

X2

 

 


X*

 


X1

 

Відповідь:

 

Розв′язання симплекс-методом

 

Приведемо систему рівнянь до канонічного вигляду

x(0)=(0,0,18,6,0,4)

Цільова функція

Побудуємо симплекс-таблицю

I базис

Cб

P0

2 3 0 0 0 -M

P1

P2

P3

P4

P5

P6

1

P3

0 18 3 2 1 0 0 0
2

P4

0 6 -1 1 0 1 0 0
3

P6

-M 4 1 1 0 0 -1 1
4 0 -2 -3 0 0 0 0
5 -4 -1 -1 0 0 1 0

Отриманий план не оптимальний


Обраний ключовий елемент (3,2)

I базис

Cб

P0

2 3 0 0 0 -M

P1

P2

P3

P4

P5

P6

1

P3

0 10 1 0 1 0 2 -2
2

P4

0 2 -2 0 0 1 1 -1
3

P2

3 4 1 1 0 0 -1 -1
4 12 1 0 0 0 -3 -3
5 0 0 0 0 0 0 -1

Отриманий план не оптимальний

Обраний ключовий елемент (2,5)

I базис

Cб

P0

2 3 0 0 0 -M

P1

P2

P3

P4

P5

P6

1

P3

0 6 5 0 1 -2 0 0
2

P5

0 2 -2 0 0 1 1 -1
3

P2

3 6 -1 1 0 1 0 0
4 18 -5 0 0 3 0 0
5 0 0 0 0 0 0 -1

Отриманий план не оптимальний

Обраний ключовий елемент (1,1)

I базис

Cб

P0

2 3 0 0 0 -M

P1

P2

P3

P4

P5

P6

1

P1

2 6/5 1 0 1/5 -2/5 0 0
2

P5

0 22/5 0 0 2/5 1/5 1 -1
3

P2

3 36/5 0 1 1/5 3/5 0 0
4 24 0 0 1 1 0 0
5 0 0 0 0 0 0 1

План оптимальний

Розв’язок: X*(,) F*=24;

 

Розв’язок двоїстої задач

Побудуємо двоїсту функцію

3. ,

Система обмежень

Скористаємось теоремою

Якщо задача лінійного програмування в канонічній формі (7)-(9) має оптимальний план , то є оптимальним планом двоїстої задачі

 

, ,

Розв’язок:

 

Fmin*= 9,6;

Завдання 2. Задача цілочислового програмування

 

Для задачі із завдання 1, як для задачі цілочислового програмування, знайти розв’язки геометричним методом і методом Гоморі.

Розв′язання геометричним методом

,


 

 

 

 

Відповідь:

Розв′язання методом Гоморі

Наведемо останню симплекс-таблицю

I базис

Cб

P0

2 3 0 0 0 -M

P1

P2

P3

P4

P5

P6

1

P1

2 6/5 1 0 1/5 -2/5 0 0
2

P5

0 22/5 0 0 2/5 1/5 1 -1
3

P2

3 36/5 0 1 1/5 3/5 0 0
4 24 0 0 1 1 0 0
5 0 0 0 0 0 0 1

Побудуємо нерівність Гоморі за першим аргументом.

 

 

I базис

Cб

P0

2 3 0 0 0 0

P1

P2

P3

P4

P5

P7

1

P1

2 6/5 1 0 1/5 -2/5 0 0
2

P5

0 22/5 0 0 2/5 1/5 1 0
3

P2

3 36/5 0 1 1/5 3/5 0 0
4

P7

0 -1/5 0 0 -1/5 -3/5 0 1
5 24 0 0 1 1 0 0

Обраний розв’язковий елемент (4,4)

I базис

Cб

P0

2 3 0 0 0 0

P1

P2

P3

P4

P5

P7

1

P1

2 1 1 0 0 -1 0 0
2

P5

0 4 0 0 0 11/5 1 0
3

P2

3 7 0 1 0 0 0 0
4

P4

0 2 0 0 1 3 0 1
5 14 0 0 0 2 0 0

Отриманий план являється оптимальним і цілочисельним.

Розв’язок: X*(1,7) Fmax*=23;

Відповідь: цілочисельною точкою максимуму даної задачі є точка (1,7)


Завдання 3. Задача дробово-лінійного програмування

Для задачі дробово-лінійного програмування знайти розв’язки геометричним методом і симплекс-методом:

 

,

Розв′язання геометричним методом

 

Визначимо, в яку сторону потрібно обертати пряму навколо початку координат, щоб значення цільової функції збільшувалось. Таким чином ми визначимо яка з крайніх точок є точкою максимуму.

f(1;0) = 2/3 f(0;1) = 3/7

Тобто при крутінні прямої проти годинникової стрілки значення цільової функції зменшується.

Використаємо результати обчислень і геометричних побудов з попереднього завдання.



 



З графіка очевидно, що розв’язок лежить на перетині двох прямих. Для визначення точки перетину прямої І та ІІ розв′яжемо систему з двох рівнянь.

Відповідь: функція набуває максимального значення при x1=6/5, x2=36/5.


Розв′язання симплекс-методом

 

Перейдемо від задачі дробово-лінійного програмування до задачі лінійного програмування.

Вводим заміну:

Вводим ще одну заміну:   

Після замін наша задача має такий вигляд:


Приведемо її до канонічної форми і доповнимо її базисами:

 

 

 

Повернемось до заміни:

x1=0 x2=6

 

Завдання 4. Транспортна задача

 

Для заданих транспортних задач скласти математичну модель і розв’язати їх методом потенціалів, використавши для визначення початкового плану метод мінімального елемента або північно-західного кута.

1.  Запаси деякого однорідного продукту знаходяться на трьох пунктах постачання (базах) A1, A2, A3 і цей продукт потрiбно доставити в три пункти споживання (призначення) B1, B2, B3. Задача полягає в тому, щоб визначити, яку кiлькiсть продукту потрiбно перевезти з кожного пункту постачання (бази) до кожного пункту споживання (призначення) так, щоб забезпечити вивезення всього наявного продукту з пунктів постачання, задовільнити повністю потреби кожного пункту споживання і при цьому сумарна вартiсть перевезень була б мiнiмальною (зворотні перевезення виключаються). Вартість перевезень сij (у грн.) з бази Аi до пункту призначення Bj вказана в таблиці, де також наведені дані про запаси ai (у тонанх) продукту і його потреби (у тонах) bj.


Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1 3 5 7 270
A2 6 9 4 180
A3 11 8 10 300
Потреби 260 280 300

Для даної транспортної задачі не виконується умова балансу , тому введемо додатковий пункт постачання з запасами 840-750=90 і тарифами С4s=0 (i=1,2,3). Тоді одержимо замкнену транспортну задачу, яка має розв’язок. Її математична модель має вигляд:

  хi,

j³ 0, 1£ i £4, 1£ j £3.

 

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1 3 5 7 270
A2 6 9 4 180
A3 11 8 10 300
A4 0 0 0 90
Потреби 260 280 300

840

840


За методом північно-західного кута знайдемо опорний план

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1

3

260

5

10

7 270
A2 6

9

180

4 180
A3 11

8

90

10

210

300
A4 0 0

0

90

90
Потреби 260 280 300

840

840

За методом північно-західного кута опорний план має вигляд:

.

F=3*260+5*10+9*180+8*90+10*210+0*90=5270

Перевіримо чи буде він оптимальним.

Знаходимо потенціали для пунктів постачання

Для тих клітинок, де, розв’яжемо систему рівнянь

 

Знаходимо з системи:

.


Для тих клітинок, де, знайдемо числа  

Оскільки , то план Х1 не є оптимальним. Будуємо цикл перерахунку

Пункти Пункти споживання Запаси

 

постачання B1 B2 B3

 

A1 3 5 7 0 270
260 10
A2 6 1 9 4 7 180
- 180 +
A3 11 -5 8 10 300
+ 90 - 210
A4 0 -4 0 -2 0 90
90
Потреби 260 280 300

840

840

 

В результаті перерахунку отримаємо

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1

3

260

5

10

7 270
A2 6 9

4

180

180
A3 11

8

270

10

30

300
A4 0 0

0

90

90
Потреби 260 280 300

840

840

Наступний опорний план

F=3*260+5*10+9*180+8*90+10*210+0*90=4010

Для тих клітинок, де, розв’яжемо систему рівнянь

 

Знаходимо з системи:


.

Для тих клітинок, де, знайдемо числа  


 

 

Отже план  є оптимальним F=4010

 


Завдання 5. Задача квадратичного програмування

Розв’язати задачу квадратичного програмування геометричним методом та аналітичним методом, використовуючи функцію Лагранжа і теорему Куна-Таккера:

Розв’язання графічним методом

 

,

Графік кола має центр в точці (-1, 4)

 

 

 

 

X* (0 , 4); F*(X*)=-16

 

Розв’язання аналітичним методом

 

,

Складемо функцію Лагранжа:

Система обмежень набуде вигляду:

Перенесемо вільні члени вправо, і при необхідності домножимо на -1

Зведемо систему обмежень до канонічного вигляду

Введемо додаткові змінні для утворення штучного базису

Розв’яжемо задачу лінійного програмування на знаходження мінімуму.

Введемо додаткові прямі обмеження на змінні.

,

 

Вектори з коефіцієнтів при невідомих:

Розв’язуємо отриману задачу звичайним симплекс-методом

I базис

Cб

P0

0 0 0 0 0 0 0 0 0 0 M M

Px1

Px2

Py1

Py2

Py3

Pu1

Pu2

Pv1

Pv2

Pv3

Pz1

Pz2

1

Pz1

M 2 -2 0 -3 1 1 -1 0 0 0 0 1 0
2

Pu2

0 8 0 2 2 1 -1 0 1 0 0 0 0 0
3

Pv1

0 18 -3 -2 0 0 0 0 0 1 0 0 0 0
4

Pv2

0 6 -1 1 0 0 0 0 0 0 1 0 0 0
5

Pz2

M 4 1 1 0 0 0 0 0 0 0 -1 0 1
5 -M M -3M M M -M 0 0 0 -M 0 0

Обраний розв’язковий елемент (5,2)

I базис

Cб

P0

0 0 0 0 0 0 0 0 0 0 M M

Px1

Px2

Py1

Py2

Py3

Pu1

Pu2

Pv1

Pv2

Pv3

Pz1

Pz2

1

Pz1

M 2 -2 0 -3 1 1 -1 0 0 0 0 1 0
2

Pu2

0 0 -2 0 2 1 -1 0 1 0 0 2 0 0
3

Pv1

0 26 -1 0 0 0 0 0 0 1 0 -2 0 0
4

Pv2

0 2 -2 0 0 0 0 0 0 0 1 1 0 0
5

Px2

0 4 1 1 0 0 0 0 0 0 0 -1 0 1
5 -2М 0 -3М М M 0 0 0 0 0 0

Обраний розв’язковий елемент (2,4)

I базис

Cб

P0

0 0 0 0 0 0 0 0 0 0 M M

Px1

Px2

Py1

Py2

Py3

Pu1

Pu2

Pv1

Pv2

Pv3

Pz1

Pz2

1

Pz1

M 2 0 0 -5 0 2 -1 -1 0 0 -2 1
2

Py2

0 0 -2 0 2 1 -1 0 1 0 0 2 0
3

Pv1

0 26 -1 0 0 0 0 0 0 1 0 -2 0
4

Pv2

0 2 -2 0 0 0 0 0 0 0 1 1 0
5

Px2

0 4 1 1 0 0 0 0 0 0 0 -1 0
5 2M 0 0 -5M 0 2M -M -M 0 0 -2M 0

 


Обраний розв’язковий елемент (1,5)

I базис

Cб

P0

0 0 0 0 0 0 0 0 0 0 M M

Px1

Px2

Py1

Py2

Py3

Pu1

Pu2

Pv1

Pv2

Pv3

Pz1

Pz2

1

Py3

0 1 0 0 -5/2 0 1 -1/2 -1/2 0 0 -1
2

Py2

0 1 -2 0 -1/2 1 0 -1/2 -1/2 0 0 1
3

Pv1

0 26 -1 0 0 0 0 0 0 1 0 -2
4

Pv2

0 2 -2 0 0 0 0 0 0 0 1 1
5

Px2

0 4 1 1 0 0 0 0 0 0 0 -1
5 0 0 0 0 0 0 0 0 0 0 0

План отриманий в результаті розв’язування задачі симплекс-методом, не є оптимальним так як він не задовольняє умови:

Отже перерахуємо симплекс-таблицю ще раз.

Обраний розв’язковий елемент (2,7)

I базис

Cб

P0

0 0 0 0 0 0 0 0 0 0

Px1

Px2

Py1

Py2

Py3

Pu1

Pu2

Pv1

Pv2

Pv3

1

Py3

0 10 0 2 -3 1 1 -1 0 0 0 -2
2

Pu2

0 18 0 4 -1 2 0 -1 1 0 0 -2
3

Pv1

0 30 0 1 0 0 0 0 0 1 0 -3
4

Pv2

0 10 0 2 0 0 0 0 0 0 1 -1
5

Px2

0 4 1 1 0 0 0 0 0 0 0 -1
5 0 0 0 0 0 0 0 0 0 0 0

Отриманий план оптимальний X* (0,4); F*(X*)=-16


Список використаної літератури

1.  Карманов В. Г. Математическое программирование: Учеб. пособие. — 5-е издание., стереотип. — М.: ФИЗМАТЛИТ, 2001. — 264 с.

2.  Моисеев Н. Н., Иванилов Ю. П., Столярова Е. М. Методы оптимизации —М.: Наука, 1978. — 352 с.


Информация о работе «Математичне моделювання економічних систем»
Раздел: Информатика, программирование
Количество знаков с пробелами: 10374
Количество таблиц: 21
Количество изображений: 17

Похожие работы

Скачать
28744
8
3

... є свою точку зору. На оцінку під час захисту впливають якість та сутність самостійності виконання, якість оформлення, мова, повнота відповідей на запитання. РЕКОМЕНДОВАНА ЛІТЕРАТУРА 1 Вітлінський В.В. Моделювання економіки: Навч. посібник. – К.: КНЕУ, 2003.- 408с. 2 Пономаренко О.І. Пономаренко В.О. Системні методи в економіці, менеджменті та бізнесі.: Навч.посібник. К.-Либідь,1995. - 240с. ...

Скачать
9923
3
5

едні змінні витрати (AVC); -  середні валові витрати (АТС); -  граничні витрати (МС); - сукупний дохід (TR) та прибуток (ЕР) підприємства в даному короткостроковому періоді. Показники витрат малого підприємства в короткостроковому періоді розраховуються за такими формулами: -  постійні витрати: , де  – ціна капіталу, грн. -  змінні витрати: , де  – ціна праці, грн. -  : ...

Скачать
73749
1
1

... модель, яка опосередковує відносини між об’єктом, який вивчається, та суб’єктом, який пізнає (системним аналітиком). Головним гальмом для практичного застосування математичного моделювання в економіці є проблема наповнення розроблених моделей конкретною та якісною інформацією. Точність і повнота первинної інформації, реальні можливості її збору й опрацювання справляють визначальний вплив на виб ...

Скачать
83742
19
21

... змін, спостерігається тільки нестабільність та по деяких господарствах різкі зміни собівартості продукції, що виготовляється та реалізується. 3. Економіко-математичне моделювання в управлінні підприємством   3.1 Економіко-математичне моделювання урожайності сільськогосподарської продукції методом Брандона. Нехай економіко-математична модель матиме вид: , Де =; =; = ; Y - ...

0 комментариев


Наверх