4. Перспективы развития нанороботов

В ходе истории люди всегда только тем и занимались, что пытались упорядочивать атомы с целью получения структур с заданными свойствами. Все развитие техники, по сути, сводится к постоянному уменьшению частиц вещества, с которыми можно работать. Первобытные люди обтесывали камни, откалывая кусочки, содержащие бесконечное число атомов. Позже появились более тонкие инструменты, позволявшие оперировать значительно меньшим количеством атомов, но счет все равно шел на квадриллионы. В двадцатом веке освоили технологии создания тонких пленок. Напыляемые слои состояли из нескольких молекул.

Идеальный вариант – манипулирование отдельными атомами. Расположив их определенным образом, можно было бы создавать структуры с любыми заданными свойствами. На сегодняшний день такая задача не относится к области фантастики. Уже примерно двадцать лет, как химики научились собирать структуры поатомно. Первоначально такая операция представлялась проблематичной, но, понимая все значение новой области науки, ученые нашли различные методы ее выполнения. Это нанотехнологии – принципиально новые технологии, по сути, преддверие очередной интеллектуальной революции. Элементарной структурной единицей, с которой они работают, являются отдельные атомы, имеющие размеры порядка десятых долей нанометра, – отсюда и их название.

Но как можно оперировать отдельными атомами? Ответом на данный вопрос являемся мы сами. Ведь внутри каждого из нас – большое количество разнообразных белков, ферментов и гормонов, а занимаются они именно тем, что выборочно разбирают или собирают те или иные молекулы. Отличие от нанотехнологий, конечно, есть: перечисленные химические соединения оперируют группами атомов, и для работы с отдельными атомами не приспособлены.

Манипулирование атомами стало возможным после появления так называемого сканирующего электронного микроскопа с туннельным эффектом. Он мог перемещать отдельные атомы с помощью специальных электромагнитных полей. Принципиальная дорога в мир нанотехнологий оказалась открытой, и ученые не преминули ею воспользоваться. Укладывая атомы углерода в определенной последовательности, они одержали в восьмидесятых годах первую победу: собрали из них две шестеренки, сидящие на валах и свободно на них вращающиеся. Эти шестеренки имели размер порядка нескольких нанометров. Как только выяснилось, что таким образом можно построить работающий механизм, началось бурное развитие нанотехнологий. И уже через несколько лет удалось построить первый наноэлектродвигатель. В нем использовалась способность некоторых длинных органических молекул передавать электрический ток практически без потерь. Мотор работал: когда на «обмотку», представляющую собой одну «длинную» молекулу, подавали напряжение, ротор, состоящий всего из нескольких молекул, начинал вращаться. Путь к наноманипулятору был открыт. С его созданием люди перестанут нуждаться в громоздких электронных микроскопах – переставлять атомы можно будет с помощью самого манипулятора. Что вплотную приблизит ученых к конечной цели.

Какова же эта цель? Судя по затратам на исследования, их результаты должны быть поистине грандиозными: некая волшебная палочка, решающая если не все, то по крайней мере очень многие проблемы, стоящие перед человечеством. Поиски призваны привести к появлению универсального инструмента – наноробота, способного манипулировать отдельными атомами, просто «захватывая» их и расставляя в нужных местах. Таким образом, можно будет создавать структуры любой сложности с требуемыми свойствами. Нужно только писать соответствующие программы.

Нанотехнологии открывают огромные перспективы. Они позволят создавать сверхчистые материалы, которые нельзя получить другими способами. Если кому-либо для выполнения уникального эксперимента потребуется алмаз, превышающий по величине знаменитый Кохинор, создание его не проблема. Да и не только для расстановки атомов пригодятся нанороботы. Они и сами являются сверхточным инструментом. С их помощью можно конструировать новые нанороботы, существенно удешевляя производство. А недорогим нанороботам уже под силу складывать из атомов и уникальные изделия, и предметы повседневного пользования.

После создания развитой инфраструктуры нанороботов необходимость в огромных заводах отпадет. Представьте себе устройство величиной с холодильник, снабженное компьютером. Внутри будут находиться емкость с различными химическими элементами и колония нанороботов. Допустим, вы захотели почистить зубы. Отдаете команду компьютеру – и тот активирует программу сборки зубной щетки. Нанороботы начинают ловить атомы в растворе и расставлять их по местам. Через некоторое время щетка готова, причем, если пожелаете, уже с зубной пастой. После гигиенической процедуры кладете ее обратно в емкость, где она разлагается на исходные атомы. Таким образом, стоимость изделия значительно уменьшается, поскольку нужно платить лишь за электричество и сам прибор. Кроме того, вещи не будут накапливаться, загромождая квартиру.

Не менее грандиозные перспективы открываются и перед медициной – человечество получит лекарства от всех существующих болезней, и не только вирусного и бактериального происхождения, но и генетического. Нанороботы смогут проникать в клетки организма и исправлять все повреждения на молекулярном уровне – т.е. зубная щетка не понадобится вовсе. И наконец, прекратится дальнейшее загрязнение окружающей среды, ведь новая технология, по сути, безотходна.

Однако чтобы достичь всего этого, нужно ответить на множество вопросов. Так, например, никто пока не знает, какие размеры должны иметь механические части роботов и как сделать так, чтобы они отвечали определенным требованиям.

Данную проблему можно решить экспериментально. Предположим, нам нужно знать, какую толщину должна иметь «рука» наноробота. Мы могли бы просто создать опытный образец и посмотреть, сломается она или нет. Если сломается, то сделать «руку» потолще, и т.д. Но у этого метода есть серьезный недостаток. Сейчас нанообъекты приходится создавать макрометодами, что очень дорого, трудоемко и долго. Чтобы перебрать много вариантов и выбрать наилучший, возможно, не хватит и жизни. Поэтому надо искать другие пути.

Итак, нам нужно знать характеристики манипулятора, по сути представляющего собой одну гигантскую молекулу. Свойства любой молекулы полностью определяются прочностью химических связей между атомами, из которых она состоит. А как известно, химическая связь – не что иное, как взаимодействие электронов и ядер атомов. Чтобы определить эти связи, мы должны знать вероятность пребывания электронов в конкретном месте в определенное время. Если вероятность того, что электрон находится между ядрами атомов велика, то связь крепка. Чем ниже вероятность этого, тем слабее связь.

Проблема была решена в начале XX столетия. Австрийский исследователь Шредингер создал уравнение, позволяющее узнать все свойства химического соединения, даже не получив его на практике. В уравнении учтены все силы, которые воздействуют на электрон. Ученый решил его для простейшего случая – атома водорода – и получил точно такие же значения, как и на практике. Проблема описания связей исчезла, но возникла новая – как решить само уравнение Шредингера. Подумаешь, уравнение – покажется кому-то. Однако не стоит недооценивать проблему. Ведь получить результат типа «икс равно» удается не так уж часто. И чем точнее уравнение описывает реальный мир, тем меньше вероятность, что оно решаемо на бумаге. Что же делать? Надо либо упрощать уравнение, либо вычислять его приближенными методами, а чаще всего приходится делать и то и другое. Уравнение Шредингера хорошо упрощается для кристаллов, в которых атомы размещены строго в узлах решетки. А границы кристалла, где регулярная структура обрывается, расположены относительно далеко, и их влиянием можно попросту пренебречь. Именно такой подход позволил узнать свойства полупроводников, что в конечном итоге привело к созданию современных интегральных схем. Для манипуляторов нанороботов все обстоит иначе. Атомов столь мало, что все они являются граничными, и решать уравнение в упрощенном виде бессмысленно. Приходится искать точное решение. С другой стороны, атомов столь много, что найти точное решение невероятно сложно. Для самого простого случая – молекулы водорода, состоящей из двух атомов, решение уравнения Шредингера не составляет проблемы. Но чем сложнее молекула, тем дольше его считать.

Среди самых распространенных наноустройств на сегодняшний день – нанотрубки. Они играют различные роли: от молекулярных фильтров, действующих как обычные сита, и до трехмерных шестеренок, без которых трудно представить себе какой-либо механизм. Нанотрубки на рисунке почти целиком состоят из углерода, а точнее из замкнутых графитовых слоев. Обратите внимание на выступы по бокам трубок: именно они выполняют функции зубьев, превращающих нанотрубки в шестерни.

Еще лет двадцать назад понятие сложности алгоритма было известно абсолютно всем. Когда объем вычислений линейно зависит от объема входных данных, говорят о линейной сложности. Это идеал, мечта программиста. Если зависимость степенная, дело обстоит хуже, но терпимо. Но если количество данных является показателем степени – это приговор алгоритму. Экспоненциальная сложность – почти то же, что и отсутствие решения задачи.

Шли годы, перед программистами возникли новые проблемы, и основное внимание было уделено им. Разумеется, постоянный рост производительности компьютеров и многократное уменьшение их стоимости позволили смириться с наличием неэффективных алгоритмов. Однако такие «тепличные» условия не вечны. Стоит появиться задаче, требующей большого объема вычислений, и проблемы сложности снова становятся предельно актуальными.

Одной из таких задач стало определение свойств, которыми должны обладать наноустройства. Согласно закону Мерфи, если неприятность может произойти, она обязательно произойдет. В полном соответствии с этой сентенцией алгоритм решения уравнения Шредингера имеет экспоненциальную сложность. Свойства молекулы водорода вычисляются за доли секунды. Но на расчет прочностей связей в воде уходит несколько минут, а в метане – уже около часа. С усложнением молекулы дела идут все хуже. Ничего не поделаешь, при увеличении числа связей на единицу требуется в тысячи раз больше ресурсов. Одним словом, определить свойства молекулы с несколькими десятками связей уже малореально.

Ученые прибегли к многочисленным упрощениям, вплоть до того, что молекулу представляли в виде совокупности шариков-атомов, соединенных между собой пружинками. Если исходить из сказанного, то все просто, и даже сверхгигантские молекулы «считаются» быстро. Но вот результат таких расчетов отличается от практического на порядки. Атомы не шарики, что еще Бор показал. Следовательно, остается постоянно искать компромисс между сложностью молекулы и точностью расчетов. А компромисс этот так близок к нулю, что рано думать о создании реальных манипуляторов.

Поэтому нужны обходные пути. Где они, никто не может предсказать. Но опыт решения, на первый взгляд, безнадежных задач уже есть. К примеру, классическая задача коммивояжера также имеет экспоненциальную сложность. Однако, создав новый тип самоорганизующейся системы, Хопфилд смог реализовать алгоритм ее решения с полиномиальной сложностью. Впрочем, за экономию ресурсов пришлось платить. Лишь половина решений является оптимальной, поэтому, используя систему Хопфилда, никогда нельзя сказать наверняка, что задача решена. Но, как известно, стопроцентную гарантию дает только страховой полис, а иметь 99%-ю уверенность в решаемости задачи, которая ранее не считалась таковой, – совсем неплохо.

Для наноустройств системы, подобной системе Хопфилда, пока не существует, но будем надеяться, что это «пока» не затянется слишком надолго.


Заключение

В ходе выполнения данной НИРС мною были проработано множество статей, посвященных вопросам нанотехнологии. Также была прочитана повесть Станислава Лемма «Непобедимый» и просмотрены видеоролики, освещающие работу нанороботов в различных сферах деятельности. После проделанной работы я пришел к следующим выводам:

Благодаря стремительному прогрессу в таких технологиях, как оптика, нанолитография, механохимия и 3D прототипирование, нанореволюция может произойти уже в течение следующего десятилетия. Когда это случится, нанотехнология окажет огромное влияние практически на все области промышленности и общества.

Человечество получит исключительно комфортную среду обитания, в которой не будет места ни голоду, ни болезням, ни изнурительному физическому труду. А в перспективе нас ждёт возникновение «разумной среды обитания» (т.е. природы, ставшей непосредственной производительной силой). Нанокомпьютеры и наномашины заполнят собой все окружающее пространство: они будут находиться между молекулами воздуха, присутствовать в каждом предмете, в каждой клетке человеческого организма. Весь окружающий мир превратится в один гигантский компьютер или, что, пожалуй, будет вернее, человечество сольется с окружающим миром в единый разумный организм.


Ссылки

1.   http://www.nas.nasa.gov/Groups/Nanotechnology/publications/MGMS_EC1/simulation/data/index.html

2.   nanorobots.ru

3.   cooler-online.com

4.   membrana.ru

5.   nanonewsnet.ru

6.   ibtechno.com

7.   r0b.biz

8.   nanoenot.pisem.net

9.   nanodigest.ru


Информация о работе «Нанотехнологии и нанороботы»
Раздел: Информатика, программирование
Количество знаков с пробелами: 32291
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
9809
0
0

... компьютер. Исследователи полагают, что на разработку полностью функциональной модели наносенсора, которым смогут воспользоваться врачи в повседневной работе, понадобиться около пяти лет. С помощью нанотехнологий медицина сможет не только с любой болезнью, но и предотвращать ее появление, сможет помогать адоптации человека в космосе. Могут ли влиять «устаревшие нанороботы» на человека? Когда ...

Скачать
49696
0
4

... будут отличаться от сегодняшних и будущих роботов, разве только нейропроцессором. Но и модели поведения нейросистем, несмотря на отсутствие аппаратных реализаций, хорошо проработаны и изучены. Развитие молекулярной нанотехнологии даст возможность тщательно изучить процессы, протекающие внутри клеток организма. Есть большие основания полагать, что точное знание того, как функционируют клетки, ...

Скачать
17454
0
0

... млрд. П'ята частина цієї суми доводиться на біотехнологічні фірми, стільки ж — на електронні, 18 % — на хімічну промисловість, по 8 % — на аерокосмічну індустрію і енергетику. Висновок На думку експертів, нанотехнології стануть рушійною силою наступної промислової революції, і змінюватимуть наш спосіб життя. Дослідження та розробки нанотехнологій знаходяться у стані підйому у гонитві за оригі ...

Скачать
36260
0
1

... перьев. Благодаря такому подходу, нанолитография глубокого пера стала универсальным инструментом для производства полупроводниковых компонентов со сложной структурой. Раздел II. Перспективы развития и проблемы. 3.1. Экономика и финансирование. Развитие нанотехнологий невозможно без самого современного научного оборудования (самая скромная нанолаборатория стоит не менее 10 млн. долларов). По ...

0 комментариев


Наверх