2. Описание программы.

Руководство пользователя.

 

При загрузке формы происходит обучение сети. Данная реализация рассчитана на работу с девятью образами. Для изменения числа образов необходимо изменить значение константы const int M=9 на необходимое число образов и перекомпиллировать программу. Образы в процессе загрузки читаются из директории запускаемой программы из файлов *. bmp. В данной случае там находятся 9 файлов с образами, имя файла должно складываться из номера образа (начало отсчета - 0) и расширения ". bmp". Если программа не найдет нужного кол-ва файлов - возникает необрабатываемая исключительная ситуация.

Сразу после загрузки формы становится доступной кнопка "Исходный образ", которая открывает стандартное окно диалога и предлагает открыть файл, который содержит изображение одного из образов, на которых обучалась сеть для распознания.

После выбора изображения становиться доступной кнопка "Локализовать", которая запускает процедуру локализации, определяет границы собственно изображения в пустой области фона и центрует изображение с разрешением 40*40. Локализованное изображение появляется в поле объекта типа TImage.

После этого становиться доступной кнопка "Исказить". Прежде, чем ее нажать, пользователь может изменить значение в поле процент зашумления (0-100%). Кнопка запускает процедуру искажения изображения, в результате которой формируется два искаженных изображения. Первый методом анизотропной апертурной фильтрации (искажаются границы символа, как это бывает при искажениях печати символа на бумаге). Второй способ искажает изображение добавлением N-процентного белого шума, т.е. случайно инвертирует N-процентов общего кол-ва точек, составляющих вектор изображения. При 100% происходит полная инверсия символа. И хотя пользователь в таком случае может различить символ - данная реализация программы не умеет этого делать, т.к считает, что символ изображается черными точками. В форме отображаются оба результата.

На этом этапе становятся доступными две кнопки "распознать" - для первого и второго искаженного образа.

После активизации обеих кнопок "Распознать" можно выбрать либо новый образ, либо поэкспериментировать с текущим, варьируя процент зашумления.

Исследование проводилось таким образом: последовательно увеличивая зашумленность образов (буква И), они подавались на вход сети Хемминга. Результаты работы приведены в таблице 1:

Тестируемый образ Процент зашумления образа Вид искаженного образа Результат распознавания

10%

20%

30%

35%

40%

45%

50%

60%

70%

80%

90%

Таким образом, НС Хемминга прекрасно справляется с задачей распознавания образов для экспериментов с искажением на 0 - 45%. В это диапазоне все эталоны распознаются без ошибок.

При 50% зашумления образы распознаются нестабильно, часто возникает “перепутывание” и на выходе НС появляется совершенно другой эталон.

При 80-90% зашумления образ начинает инвертироваться и при зашумлении 100% мы видим полностью инвертированное изображение исходного. Хотя, человек может распознать с легкостью инвертированный символ, программа не умеет этого делать, т.к считает, что сам символ изображается только черными точками.

При зашумлении 80-100% НС Хемминга перепутывает подаваемые символы с наиболее похожими эталонными. Например, при 100% зашумления буква "П" похожа на толстую полосу и программа распознает символ как "1"


Информация о работе «Нейронная сеть Хемминга»
Раздел: Информатика, программирование
Количество знаков с пробелами: 11447
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
33231
4
4

... задач, особенно сильно отличающихся от ранее решенных, большую роль играет та сфера мышления, которую называют подсознательной, бессознательной, или интуитивной. Основными методами, используемыми в искусственном интеллекте, являются разного рода программные модели и средства, эксперимент на ЭВМ и теоретические модели. Однако современные ЭВМ уже мало удовлетворяют специалистов по искусственному ...

Скачать
21082
0
0

... , а именно в результате попыток воспроизвести способность нервных биологических систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга. Основной областью исследований по искусственному интеллекту в 60-80е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления (в частности, на его представлении как манипуляций с символами ...

Скачать
138248
8
0

... со строгими методами оптимизации образуют жесткую структуру, изменения которой осуществляются разработчиками или специальными лицами, администрирующими информационную компоненту и сопровождающими систему автоматизированного проектирования. Они не являются специалистами в данной предметной области. ЛОГИЧЕСКИЕ МЕТОДЫ ПРЕДСТАВЛЕНИЯ ЗНАНИЙ Предварительно остановимся на изложении некоторых понятий ...

Скачать
175590
30
100

... , может приводить к большим потерям рабочего тела и раскрутке космического аппарата до недопустимых угловых скоростей. Таким образом разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата – является актуальной задачей. В настоящей работе решается задача построения алгоритмов контроля и идентификации отказов командных приборов и исполнительных органов. ...

0 комментариев


Наверх