Содержание
Введение
1. Автоматизированное рабочего место
1.1 Характеристика основных элементов АРМ
1.2 Системные требования к персональному компьютеру и программному обеспечению
2. 3D–моделирование
2.1 3D: три измерения
2.2 Состав 3D-модели. Создание 3D-моделей
2.3 Скульптурное моделирование
2.4 Создание 3D-модели: придать простому вид сложного
2.5 Трехмерное моделирование
2.6 3D-текстуры
2.7 Риггинг 3D-модели
2.8 3D-анимация: как это делается
2.9 Скелетная анимация, прямая и инверсная кинематика
2.10 Частицы в 3D-графике: Particle Systems
3. Понятие трехмерной графики и программы 3D-моделирования
3.1 Понятие трехмерной графики
3.2 Обзор существующих программ 3D-моделирования
3.3 Применение и преимущества трёхмерного моделирования
4. Создание клипа (3D-анимации) с помощью программы iClone
5. Общие требования по технике безопасности
Заключение
Список использованной литературы
Приложение
В современных условиях для реализации функциональных задач в любой предметной области необходимо использование автоматизированных рабочих мест на базе профессиональных персональных компьютеров. Например, в сфере экономики на таких АРМ можно осуществлять планирование, моделирование, оптимизацию процессов, принятие решений в различных информационных системах и для различных сочетаний задач. Для каждой предметной области необходимо предусматривать АРМ, соответствующие их назначению. Хотя принципы создания любых АРМ должны быть общими: системность, гибкость, устойчивость, эффективность.
До недавнего времени основными методами выполнения графических материалов являлись черчение, рисунок, живопись, макетирование и другие виды работ, выполняемых вручную.
Появление высокопроизводительных персональных компьютеров, создание большого количества графических программ различного назначения, в том числе объёмного моделирования
Средства современной компьютерной графики развиваются стремительными темпами. Это связано с быстрым увеличением аппаратных мощностей графической системы персональных компьютеров. С другой стороны это развитие связано с потребностями конечных пользователей.
Графика в виде 3D (трехмерная) выглядит намного реалистичней чем традиционная двухмерная графика, кроме того, она позволяет представить объект в том виде, в котором он может быть в реальности, рассмотреть его со всех сторон.
Все это позволило трехмерной графике найти широкое применение как в индустрии развлечений, например при создании графики для компьютерных игр, в том числе и браузерных, так и в серьезных системах, которые нашли применение в архитектуре, дизайне, проектировании деталей и целых объектов.
Целью данной работы является рассмотрение существующих программ 3D графики: 3D Studio MAX, iClone, Blender, выявление их возможностей, а так же анализ истории разработки программ 3D, направлений их дальнейшего развития и рассмотрение принципов их функционирования; практическое применение программы iClone для создания 3D-анимации.
Объектом работы является программное обеспечение для работы с графикой и анимацией.
Автоматизированное рабочее место (АРМ), или, в зарубежной терминологии, «рабочая станция» (work-station), представляет собой место пользователя-специалиста той или иной профессии, оборудованное средствами, необходимыми для автоматизации выполнения им определенных функций. Такими средствами, как правило, является ПК, дополняемый по мере необходимости другими вспомогательными электронными устройствами, а именно: дисковыми накопителями, печатающими устройствами, оптическими читающими устройствами или считывателями штрихового кода, устройствами графики, средствами сопряжения с другими АРМ и с локальными вычислительными сетями и т.д. Hаибольшее распространение в мире получили АРМ на базе профессиональных ПК с архитектурой IBM PC.
Для каждого объекта управления необходимо предусматривать АРМ, соответствующие их значению. Однако принципы создания любых АРМ должны быть общими: системность, гибкость, устойчивость, эффективность.
Согласно принципу системности, АРМ следует рассматривать как системы, структура которых определяется функциональным назначением.
Принцип гибкости означает приспособленность системы к возможным перестройкам, благодаря модульности построения всех подсистем и стандартизации их элементов.
Принцип устойчивости заключается в том, что система АРМ должна выполнять основные функции независимо от воздействия на нее внутренних и внешних возмущающих факторов. Это значит, что неполадки в отдельных ее частях должны быть легко устраняемы, а работоспособность системы быстро восстанавливаема.
Эффективность АРМ следует рассматривать как интегральный показатель уровня реализации приведенных выше принципов, отнесенного к затратам на создание и эксплуатацию системы.
Функционирование АРМ может дать желаемый эффект при условии правильного распределения функций и нагрузки между человеком и машинными средствами обработки информации, ядром которой является компьютер.
АРМ могут быть индивидуальными, групповыми, коллективными. Применительно к групповым и коллективным АРМ в целях эффективного функционирования системы ЭВМ - специалистам (коллективу) необходимо ужесточить требования к организации работы АРМ и чётко определить функции администрирования в такой системе. Система АРМ, являющаяся человеком - машиной, должна быть открытой, гибкой, приспособленной к постоянному развитию и совершенствованию. В такой системе должны быть обеспечены:
- максимальная приближённость специалистов к машинным средствам обработки информации;
- работа в диалоговом режиме;
- оснащение АРМ в соответствии с требованиями эргономики;
- высокая производительность компьютера;
- максимальная автоматизация рутинных процессов;
- моральная удовлетворенность специалистов условиями труда, стимулирующая их творческую активность, в частности, в дальнейшем развитии системы;
- возможность самообучения специалистов.
Структура АРМ - это совокупность его подсистем и элементов. К обеспечивающим системам в первую очередь следует отнести: техническое, информационное, программное и организационное обеспечение. Кроме того, существует целый ряд подсистем.
Техническое обеспечение представляет собой комплекс технических средств, основой которого служит профессиональный персональный компьютер, предусматривающий работу специалиста без посредников (программистов, операторов и др.). У групповых АРМ таким компьютером могут пользоваться 4 - 6 человек. В комплект профессионального персонального компьютера входят процессор, дисплей, клавиатура, магнитные накопители информации, печатающие устройства и графопостроители.
Организационное обеспечение предусматривает определение и документальное оформление прав и обязанностей пользователей АРМ.
Программное обеспечение состоит из системного программного обеспечения и прикладного. Основой системного обеспечения является операционная система и системы программирования.
1.1 Характеристика основных элементов АРМРассмотрим основные составляющие элементы АРМ. Основным устройством ПЭВМ является микропроцессор, который обеспечивает выполнение различных операций, содержащихся в программе. В настоящее время наибольшее распространение получили 32- разрядные микропроцессоры, но уже очевидно, что скоро на смену им придут 64-разрядные микропроцессоры. Разрядность означает длину рабочего слова в двоичном коде. Микропроцессоры также различаются по тактовой частоте, с которой они работают. Чем больше тактовая частота и разрядность, тем выше производительность процессора. Выполнение нескольких десятков миллионов операций в секунду является обычным делом для ПЭВМ.
Производительность ПЭВМ зависит также и от количества памяти, с которой она работает. Память бывает основная и внешняя.
Основная память состоит из двух компонентов: постоянного запоминающего устройства (ROM или ПЗУ) и оперативного запоминающего устройства (RAM или ОЗУ). В ОЗУ хранится динамическая информация программы и обрабатываемые данные. При выключении питания содержимое ОЗУ теряется. ПЗУ, как правило, гораздо меньше ОЗУ, информация в нем хранится постоянно и ее изменение либо вообще невозможно, либо возможно только при помощи специальных устройств (программаторов ПЗУ). Емкость памяти 64-разрядных ЭВМ как правило 512 Мб и более.
Внешние запоминающие устройства (ВЗУ) также бывают разных типов.
Ленточные накопители служат для хранения информации на магнитной ленте. В настоящее время могут хранить до нескольких сотен гигабайт (1Гб = 1024 Мб) информации. Несмотря на то, что эти устройства появились довольно давно они до сих пор широко распространены, главным образом из-за большого объема вмещаемых данных, и используются в основном для резервного копирования и длительного хранения информации. Дисковые накопители в настоящее время наиболее широко распространены. Их можно разделить на несколько групп: а) Накопители на гибких дисках (флоппи дисках). Несмотря на сравнительно низкую емкость дискет (от 1 до 3Мб) в настоящее время очень широко распространены главным образом из-за низкой стоимости. б) Накопители на жестких дисках (винчестеры). Распространены также широко, как и накопители на гибких дисках, но имеют гораздо большую скорость передачи данных, большую емкость и надежность хранения информации. Стоимость винчестеров постоянно падает, а скорость, надежность и емкость (жестким диском объемом 100-120 Гб сейчас уже никого не удивишь) возрастают. Все это делает их незаменимым атрибутом любой современной ПЭВМ. в) Все большее распространение в настоящее время получают накопители на лазерных дисках (CD-ROM). г) Существует также целый ряд других ВЗУ по разным причинам не получивших в настоящее время широкого распространения (магнитооптические диски, диски Бернулли, WORM-диски и др.). Некоторые виды накопителей (перфоленты, перфокарты, магнитные барабаны и пр.) сильно устарели и в современных ПЭВМ вообще не используются. Дисплей - основное устройство для отображения информации. Характеризуются размером экрана, максимальным разрешением и пр. Чем больше размер экрана и чем больше разрешение, тем, соответственно больше информации можно на нем разместить. Клавиатура - основное устройство для ввода информации.
Существуют также устройства, облегчающие работу оператора, такие, как мышь, световое перо и пр. Также для ввода информации широко используются сканеры. Большое будущее за устройствами распознавания и синтеза речи, распознавания изображения.
Все устройства ПЭВМ взаимодействуют через системную магистраль. Однако из ВЗУ информация сначала должна быть переписана в ОЗУ и лишь тогда она становиться доступной процессору.
1.2 Системные требования к персональному компьютеру и программному обеспечениюКонфигурация ПК:
· Процессор AMD Athlon-64 X2 Socket AM2;
· Память DDR2 1024Mb;
· Жесткий диск SAMSUNG 400GB SATA-II;
· Монитор Acer AL1717, 17" LCD;
· Разрешение экрана: 1280 x 1024;
· Видеокарта PCI Express 256 Mb GF8600GT 128bit GDDR3;
· Тип BIOS: AMI;
· Операционная система: Microsoft Windows XP Professional;
Программное обеспечение. Программное обеспечение - совокупность программ системы обработки информации и программных документов, необходимых для эксплуатации этих программ. Программное обеспечение является одним из видов обеспечения вычислительной системы, наряду с техническим (аппаратным), математическим, информационным, лингвистическим, организационным и методическим обеспечением.
Программное обеспечение принято по назначению подразделять на: системное, прикладное и инструментальное.
Системное программное обеспечение – это комплекс программ, которые обеспечивают эффективное управление компонентами вычислительной системы, такими как: процессор, оперативная память, каналы ввода-вывода, сетевое оборудование. В отличие от прикладного программного обеспечения, системное не решает конкретные прикладные задачи, а лишь обеспечивает работу других программ, управляет аппаратными ресурсами вычислительной системы и т.д.
Прикладная программа или приложение – программа, предназначенная для выполнения определенных пользовательских задач и рассчитанная на непосредственное взаимодействие с пользователем. В большинстве операционных систем прикладные программы не могут обращаться к ресурсам компьютера напрямую, а взаимодействуют с оборудованием и прочим, посредством операционной системы.
Инструментальное программное обеспечение – программное обеспечение, предназначенное для использования в ходе проектирования, разработки и сопровождения программ. Обычно этот термин применяется для акцентирования отличия данного класса ПО от прикладного и системного программного обеспечения.
Системные требования к компьютеру для создания 3D-анимации включают в себя следующее. Операционная система: Windows 7 / Windows Vista / Windows XP (с пакетом обновления 2 или более поздней версии). Поддержка 32-битных и 64-разрядной операционной системы.
Минимальные системные требования:
· Pentium4 2 ГГц;
· 1GB RAM;
· 2 Гб свободного пространства на жестком диске;
· Разрешение экрана: 1024 x 768;
· Глубина цвета: True Color (32-разрядная версия) ;
· Видеокарта: Nvidia GeForce7 серии или выше / ATI X1300 или выше;
· Поддержка DirectX 9.0c
· Видео память: 512 Мб RAM;
· Windows XP SP2 / Vista
Рекомендуемые системные требования;
· Двойной ядра процессора или выше;
· 2GB RAM или выше;
· 2 Гб свободного пространства на жестком диске или выше;
· Разрешение экрана: 1024 x 768 или выше;
· Видеокарта: Nvidia GeForce 8 Series или выше / ATI HD 3000 Series и выше;
· Видео Память: 512MB RAM или выше;
· Windows XP SP2 / Vista
Дополнительные требования:
· 3-кнопочная мышь;
· DirectX 9;
· Итернет-соединение, необходимое для онлайн активации;
Особенности:
- фото Realistika 3D-модели быстро и легко;
- персональная виртуальный вид, характер, масштаб, телом, волосами, предметы, одежду, предметы снабжения и структуры;
- анимация захвата движения похожа на реальность танца и естественного человеческого движения;
- синхронизация музыки - автоматическая синхронизация движений в ритме музыки;
- редактор Движения - творческий потенциал, который не ограничивается только вашей виртуальной возможности при создании модели;
- поддержка 2D/3D сцен;
3D-моделирование – это создание 3-х мерной модели мира при помощи формы и цвета. 3D-модель – это не изображение, а именно модель мира. Задача художника максимально ярко, объемно и правдоподобно отразить предмет, и не важно – реальный он или вымышленный. Рассмотрим более подробно что такое вершины, грани, полигоны, текстуры и карты нормалей, можно попробовать представить себе, как происходит создание трехмерной модели любого известного нам и неизвестного персонажа для мультфильма, кино, рекламы, компьютерной игры и т.д. в любой студии трехмерной графики.
2.1 3D: три измерения3D – подразумеваем трехмерная графика. Собственно 3D сокращенное от английского 3 Dimensions, или по-русски – три измерения. Это как в курсе математики в старших классах, есть геометрия, а есть – тригонометрия. Вот геометрия – это фигуры 2D, а тригонометрия – 3D. 3D графика стала следствием развития компьютерной графики вообще. Когда компьютеры научились воспроизводить 2D изображения на достаточно хорошем уровне, дизайнеры захотели из художников превратиться в скульпторов или строителей, но обязательно получить объемное цифровое изображение на компьютере, которое бы можно было рассмотреть со всех сторон. На сегодняшний день 3D называют всю совокупность приемов и инструментов (как программных, так и аппаратных), призванных обеспечить пространственно-временную непрерывность получаемых изображений.
Применяется 3D графика практически во всех отраслях: архитектурной визуализации, кинематографе, телевидении, компьютерных играх, печатной продукции, в науке, медицине и т.д. Где она более заметна и очевидна, где-то мы и не подозреваем, что это компьютерная графика.
Или при просмотре фильма всегда можно отличить, где настоящий человек загримирован под чудовище, а где чудовища целиком и полностью трехмерные. Чаще всего - кинокадр это смешение живой съемки и компьютерной графики.
Рассмотрим, что позволяет 3D-изображению быть трехмерным. Трёхмерное изображение отличается от плоского построением геометрической проекции 3D моделей в сцене на экране компьютера с помощью специальных программ.
При этом в 3D можно создать все, что угодно, любое нечто: это может быть фотореалистичный дом, например, который никто и не отличит, а может быть летающий корабль, который никто никогда не видел. Причем он будет вписан в сцену так, что все поверят. Модели могут быть созданы по образу и подобию конкретного объекта: модель с машины, упаковки любого товара, платья из коллекции, даже человека можно «замоделить» с портретной схожестью. А может быть создано просто дерево, или просто цветок, или просто гора, для этого используются фрактальные генераторы.
Следующий термин, который хочется объяснить: создание 3D. Процесс непростой и состоит из двух основных этапов:
Моделирование – создание модели сцены и объектов в ней.
Рендеринг – построение проекции созданной модели в выбранном ракурсе.
Внутри этих этапов производства 3D есть еще много нюансов, которые послужат темами еще ни одной статьи.
Теперь, когда появилась возможность создавать трехмерные модели, дизайнеры хотят, чтобы эта трехмерность была доступна в полном объеме всем зрителям. Уже созданы 3D кинотеатры, 3D принтеры, 3D мониторы, 3D телевидение. Но над этими разработками еще работать и работать, пока каждый человек в своей картине сможет увидеть 3D изображение в объеме.
... нормальной температуры воздуха в помещении независимо от наружной температуры. В настоящее время наиболее часто в гостиничном хозяйстве применяется водяное, паровое и электрическое отопление. Выбор отопления зависит от назначения и архитектурно-строительного решения гостиницы. Самым распространенным является водяное отопление. В гостиницах применяют отопительные системы среднего давления с ...
... собеседования. Оценку, отбор и прием персонала, учет приема, перемещений, поощрений и увольнения персонала, профессиональную ориентацию и организацию рационального использования персонала, управления занятостью, делопроизводственное обеспечение системы управления персоналом. Подсистема трудовых отношений анализирует и регулирует групповые и личностные взаимоотношения, анализирует и регулирует ...
... (САПР) и пр.; - ПС, используемые в обучении – электронные учебники, тренажеры, тесты и пр.; - игровые программы; - программы, созданные пользователем с помощью сред программирования. Еще один класс программного обеспечения – специальное ПО. Основное его отличие от системного ПО в том, что пользователь сам решает, будет ли он использовать эти ПС или нет, а отличие ...
... Знание языков 5. Творческие данные 6. Общительность Для анимации туров большое значение имеет использования календаря празников. и знаменательных событий. Лекция 13. Информационные технологии в туристической деятельности 13.1 Автоматизация работы турфирмы В наше время компьютер стал «полноценным рабочим» каждого предприятия. Турфирме сегодня без компьютера не обойтись. ...
0 комментариев