1.         Создание нового интерфейса.

2.         Написание кода для обработчиков событий.

2.1.3.1           Создание нового интерфейса

Все элементы интерфейса в Delphi являются визуальными компонентами. Создание нового интерфейса начинается с создания формы (класс TForm), являющейся контейнером, содержащим другие компоненты, определяющие функциональность приложения. Формы могут быть стандартными окнами, диалоговыми панелями, панелями сообщений и контейнерами.

В таблице 3.1 приведено описание основных стандартных визуальных компонентов, которые могут быть использованы при создании интерфейса программы.

Таблица 3.1

Стандартные визуальные компоненты Класс, которым представлен компонент
Главное меню TmainMenu
Локальное меню TpopupMenu
Статический текст Tlabel
Строка редактирования Tedit
Редактор Tmemo
Стандартная кнопка Tbutton
Кнопка с независимой фиксацией TchekBox
Кнопка с зависимой фиксацией TradioButton
Список TlistBox
Комбинированный список TcomboBox

Таким образом, создание нового интерфейса сводится к созданию формы приложения, созданию главного меню и размещению, соответствующих функциональности будущей программы, наборов элементов интерфейса.

Меню любого Dos – приложения, может быть легко и быстро построено в среде Delphi, и может быть аналогичным меню, либо иметь любой иной вид.

Следующим, самым трудоемким этапом, является написание кода для обработчиков событий. Вернее было бы говорить не о написании кода, потому как код (процедуры), реализующий действия соответствующие выбранным пунктам меню уже написан, а о правильной расстановке процедур, в соответствии с выбранным пунктом нового меню. Для этого нужно определить где и какие процедуры или функции вызываются при активизации исследуемого пункта. И вызывать их в обработчиках событий.

Например, при нажатии кнопки, представленной классом TButton, может вызываться стандартная Pascal‑процедура:

procedure TForm1. Button1Click (Sender: TObject);

begin

Proc1 (i);

end;

Главное, чтобы вызываемая в ответ на нажатие кнопки процедура или функция была доступна внутри главного программного модуля приложения Существует несколько способов сделать процедуру или функцию доступной. Самый простой способ – это определить заголовок процедуры и тело программы в начале раздела реализации блока. Так как они размещены вначале, компилятору становится известно о их существовании до того, как они будут вызваны из какой-либо части программы. Второй способ – объявление заголовка процедуры с ключевым словом forward, а ее имя и принимаемые параметры в любой части программы. Третий способ – помещение объявления процедуры в разделе интерфейса. Такое описание действует как прототип и делает процедуру доступной из модуля в котором она описана и из любого другого модуля, использующего данный.

В случае исполнительной подсистемы МИКРОСИМ целесообразнее всего подключить все используемые в ходе ее работы модули к главному программному модулю приложения, в предложении Uses. В этом случае все процедуры и функции исполнительной подсистемы будут доступны.

2.2       Прохождение задания в интегрированной в СВПИМ системе МИКРОСИМ

В рамках данного дипломного проекта, система имитационного моделирования МИКРОСИМ была интегрирована в Систему Визуального Программирования Имитационных Моделей в рамках единой программой оболочки. Поэтому этапы прохождения задания в МИКРОСИМ претерпели существенное изменение.

Работа с моделирующей системой начинается с запуска редактора сетевых моделей. В котором разработчиком создается графическое изображение сегмента, задаются атрибуты фишек, процедуры временных задержек, трансформации и управления для переходов. После чего осуществляется экспорт графического изображения в текстовое описание, с запоминанием в файле с расширением. JOM. Например, SEG.JOM. В случае многосегментной модели, необходимо создать предварительно графическое представление и осуществить обработку каждого из сегментов, с последующим их объединением в готовую модель средствами, предоставляемыми СВПИМ.

Далее осуществляется запуск МИКРОСИМ, процесс моделирования в котором состоит из двух основных стадий: построения модели и решения (выполнения) созданной модели. Эти стадии, как было рассмотрено в специальной части проекта, реализуются двумя самостоятельными подсистемами – креативной и исполнительной, работающими в диалоговом режиме.

Рис 3.2

Запуск МИКРОСИМ осуществляется непосредственно из редактора (пункт меню «файл / запустить Microsim», (рис 3.2) что увеличивает удобство его использования, и исключает необходимость выхода из редактора с целью осуществления процесса моделирования в среде МИКРОСИМ. Однако совместное использование СВПИМ и МИКРОСИМ не является обязательным. Работа с МИКРОСИМ начинается как обычно, с работы в креативной подсистеме.

В креативную подсистему входят несколько разных обрабатывающих программ, запускаемых в определенном порядке. Исполнительная подсистема состоит из единственного загрузочного модуля.

Рассмотрим более подробно этапы построения модели и соответствующие им программные модули креативной подсистемы. Основная задача этой подсистемы – подготовка к сборке всех сегментов, из которых должна состоять создаваемая модель.

Работа с креативной подсистемой начинается с работы в ее текстовом редакторе, который предоставляет исследователю возможность просмотра и редактирования текстового описания модели на ЯОМ, а также редактирование файлов на ЯЗП (пункт меню «Model / Parameters…», рис. 3.3).

Рис. 3.3

 

Описание каждого сегмента на ЯОМ, созданное при помощи СВПИМ подвергается следующим последовательным преобразованиям:

·     компиляция сегмента с языка ЯОМ на язык турбо Паскаль (получаются два компонента сегмента – сетевой и процедурный, первый из них запоминается в файле с расширением NET, а второй – в файле с расширением PAS);

·     компиляция процедурного компонента сегмента с языка Туpбо Паскаль с использованием компилятора командной строки (получается модуль в формате TPU, который запоминается в файле с расширением TPU).

Первый этап осуществляется специальным препроцессором (компилятором) системы моделирования. В результате этого преобразования в двух разных файлах получаются два компонента – сетевой и процедурный. Сетевой компонент отражает Е-сетевую структуру сегмента, а процедурный компонент объединяет в себе все процедуры данного сегмента, выраженные на языке Паскаль.

Как уже отмечалось, стандартное расширение двух названных файлов – NET и PAS. Например, после второго преобразования сегмента из файла SEG.JOM будут получены два файла SEG.NET и SEG.PAS.

Второй этап – это компиляция полученного процедурного компонента с языка Туpбо Паскаль. Это делается с помощью стандартного компилятора, работающего в режиме командной строки. Результатом этого этапа преобразования является файл с расширением TPU, содержащий модуль в формате TPU.

Таким образом, конечным результатом обработки одного сегмента компилирующей подсистемой являются два файла с расширениями NET и TPU (например, SEG.NET и SEG.TPU). Соответствующая пара файлов должна быть получена для каждого из сегментов, входящих в модель.

Следует отметить, что при разработке модели использование СВПИМ не является обязательным. Исследователь может не использовать возможности СВПИМ, либо использовать их частично. В этом случае к стадии построения модели следует добавить еще один этап, этап редактирования и модификации описания сегмента, который осуществляется во встроенном в МИКРОСИМ специальном текстовом редакторе, либо в любом другом доступном редакторе текстовых файлов.

Назначение исполнительной подсистемы – проведение экспериментов при выполнении модели. Функции исполнительной подсистемы реализует отдельный загрузочный модуль. Его работа происходит в диалоговом режиме взаимодействия с пользователем.

Исполнительная подсистема завершает создание готовой к выполнению Е-сетевой модели и обеспечивает проведение имитационных экспериментов с этой моделью. Следует отметить, что появление подсистемы визуального отображения процесса интерпретации моделей, налагает ряд требований направленных на обеспечение возможности и правильности последующей визуализации процесса работы Е-сетевой модели.

Первое из требований заключается в указании предложения TRACE ALL при задании параметров модели. Сам по себе язык задания параметров предназначен для контроля состояния сформированных Е-сетевых моделей на стадии их выполнения (интерпретации). ЯЗП дает возможность задавать начальную маркировку позиций в сегментах модели, устанавливать или изменять значения сетевых переменных и сетевых массивов, назначать и отменять сбор статистики по избранным позициям и переходам модели, задавать и сбрасывать признак трассировки срабатывания переходов при выполнении модели, специфицировать условия остановки выполнения модели (не считая истечения заданного модельного времени и возникновения особых ситуаций). Все изменения, вносимые в Е-сетевую модель с помощью предложений ЯЗП, не требуют повторной компиляции и сборки модели, что упрощает проведение экспериментов над однажды скомпилированной и скомпонованной моделью. Как было отмечено выше, ввод предложений ЯЗП осуществляется либо непосредственно в исполнительной подсистеме, либо, с помощью текстового редактора в файл с расширением.JZP, который обрабатывается компилятором ЯЗП непосредственно перед запуском модели на исполнение.

Вторым требованием является наличие свободного дискового пространства, которое необходимо для создания файла, содержащего информацию о процессе интерпретации, используемого в дальнейшем в СВПИМ, при визуализации работы модели.

В качестве третьего требования, хотелось бы указать необходимость грамотного указания единиц времени моделирования. Проведенные исследования и эксперименты показали, что даже для небольших моделей несовпадение в указании модельного времени при описании модели на ЯОМ и единицы времени, указанном при запуске модели может привести к увеличению необходимого для создания требуемого файла объема дискового пространства. Например, для модели многотерминальной вычислительной системы состоящей из процессора и трех терминалов, задания с которых поступают через интервалы времени, равные соответственно 10, 20 и 30 секунд, указание при запуске модельного времени в микросекундах приводит к тому что при времени моделирования равном одной секунде, файл имеет объем порядка 18‑ти Мбайт. При правильном указании единиц времени моделирования файл с результатами работы той же модели за время равное 1000 секунд, имеет объем порядка 17‑Кбайт.

Интерпретатор реализует алгоритм функционирования Е-сетевой машины, и таким образом обеспечивает моделирование параллельных процессов, протекающих в Е-сети, состоящей из сегментов, входящих в модель. Интерпретатор использует подпрограммы сбора статистики для накопления статистической информации об исследуемых характеристиках модели (например, о длинах очередей, числе срабатываний переходов и т.д.). Диагностические сообщения интерпретатора о ходе моделирования помещены в отдельный файл.

По окончании моделирования подпрограммы обработки статистики обеспечивают выдачу результатов моделирования в виде гистограмм и таблиц, содержащих значения исследуемых характеристик модели (например, средние длины очередей, коэффициенты занятости позиций и т.д.).

По желанию исследователя результаты моделирования могут быть сохранены в файле, для дальнейшего их изучения и обработки.

Для проведения экспериментов с моделью, требующих больших затрат машинного времени, предусматриваются возможности сохранения модели в файле и последующей загрузки модели из файла в оперативную память для продолжения моделирования.

Для контроля за правильностью сборки модели и корректностью работы интерпретатора исполнительная подсистема позволяет просматривать модель путем получения справочной информации о содержимом структур данных, составляющих сетевые компоненты сегментов.

Следует отметить, что имя создаваемого для подсистемы визуализации файла совпадает с именем модели.

По окончании работы в среде МИКРОСИМ осуществляется возврат в среду редактора СВПИМ, в котором можно либо продолжить разработки новых моделей либо обратиться к просмотру визуально отображения процесса интерпретации ранее обработанных моделей. Для осуществление последнего в СВПИМ предусмотрена специальная кнопка (рис. 3.4), расположенная в центре панели управления, активизирующая подсистему графического отображения. Необходимо, чтобы графическое изображение сегмента или сегментов исследуемой модели было открыто. Рекомендуется также закрыт все остальные окна для того, чтобы они не закрывали собой части изображения.

Рис 3.4

Начало визуального отображения происходит с запроса имени файла (рис. 3.5). Файл должен находится в каталоге MICROSIM / BIN, в противном случае система диагностирует ошибку, либо в каталоге MNEDITOR, при условии, что MICROSIM отсутствует на дисках.

Рис 3.5


Если файл обнаружен, появляется запрос на необходимость пошагового отображения процесса моделирования. Если ответ на запрос утвердительный – демонстрация срабатывания каждого следующего перехода осуществляется после нажатия клавиши Enter и т.д. В противном случае возникает запрос на установление величины коэффициента визуальной задержки. Установление ее величины предоставляется на выбор пользователя. Если исследователя не устраивает установленная им задержка, он может остановить процесс и запустить его вновь с указанием другой, необходимой ему задержки.

После установления режимов работы подсистемы на экране начинается процесс визуального отображения интерпретации (рис3.6). Прежде всего, осуществляется начальная маркировка модели. Процесс интерпретации реализуется по всем правилам функционирования элементарных Е-сетей. Сработавший переход отмечается красным цветом и происходит перемещение фишек. В случае очередей, количество фишек в них отмечается соответствующей цифрой. При каждом срабатывании перехода в системе в строке статуса редактора предусмотрено отображение текущего модельного времени, на момент окончания активной фазы сработавшего перехода.

Рис 3.6


Этап визуализации может быть остановлен нажатием той же кнопки. При этом появится запрос на удаление обрабатываемого файла. Если пользователь считает, что не возникнет необходимость возвращаться к наблюдению за работой данной схемы, на запрос следует ответить утвердительно.

Просмотр результатов моделирования

Рис 3.7

 

Как было отмечено выше, результаты моделирования в виде таблиц, содержащих информацию о результатах интерпретации модели, могут быть просмотрены в самой подсистеме, либо сохранены в файл, с расширением по умолчанию *.dat. Поскольку работа в редакторе подразумевает осуществление всех этапов исследования модели в его рамках, была учтена и необходимость просмотра файла. Для этого нужно выбрать пункт меню «Файл / Результат» (рис 3.7). И открыть требуемый для просмотра файл.

Рис. 3.8


3.         Оценка конкурентоспособности изделий

В последнее время широкое распространение получили разнообразные мультипрограммные и мультипроцессорные системы, локальные вычислительные сети, системы параллельной и распределенной обработки данных, а также системы массового обслуживания (СМО). При проектировании подобных систем перед разработчиками возникает проблема необходимости исследования их параметров еще на этапе проектирования. Подобное исследование позволило бы на месте отслеживать и устранять недостатки проектируемой системы, оценивать и повышать ее эффективность.

Для решения подобного рода задач существуют имитационные моделирующие системы (ИМС), позволяющие полностью описать реальный объект или процесс в виде модели, и проводить эксперименты с ней, а не с самим объектом, что немаловажно, особенно в том случае, когда реальный эксперимент требует существенных затрат или, по какой либо причине, невозможен.

Немаловажным достоинством использования ИМС, является тот факт, что эксперимент с моделью упрощает определение так называемых «узких мест» (наиболее загруженных устройств) системы, там, где в виду ее сложности выявить их интуитивно не представляется возможным.

Для уже существующих и функционирующих систем ИМС позволяет выявить перспективы их развития без останова всей системы либо потери работоспособности, определить, как возможные изменения в системе отразятся на ее работе.

Ввиду приведенных выше достоинств, необходимости и полезности использования ИМС при разработке вычислительных сетей и систем обработки данных, а также при исследовании их работы, можно говорить о заинтересованности проектировщиков в данном программном продукте.

Одним из представителей семейства ИМС является система Е – сетевого моделирования MICROSIM, разработанная в 1995 году ведущими специалистами Московского института электронной техники. Она предназначена для разработки имитационных моделей и исследования характеристик этих моделей посредством проведения экспериментов с ними в режиме диалога.

В данном разделе дипломного проекта автор предпримет попытку рассмотреть MICROSIM в качестве программного продукта, и провести оценку конкурентоспособности данной системы как возможного продукта, предлагаемого на свободном рынке.

Успех реализации любого товара и достижение желаемого результата в виде прибыли либо другого продукта (услуги) взамен зависит от совокупности потребительских свойств товара, предлагаемого покупателю, качества исполнения, уровня сервисного обслуживания, оформления и т.д.

3.1       Анализ конкурентоспособности изделий

Анализ и оценка спроса на конкретный товар являются важной стратегической задачей и жестко связаны с жизненным циклом товара.

Жизненный цикл товара – важнейшая концепция, которая рассматривает динамику конкурентоспособного пребывания товара на рынке. Этапы жизненного цикла охватывают периоды времени от ввода товара на рынок, до его ухода. Каждый из них обладает особенностями и имеет собственные названия, принятые в маркетинге: зарождение, рост, зрелость, насыщение, спад.

Этап зарождения характеризуется медленным увеличением объема продаж. Для принципиально новых товаров этот этап может быть достаточно продолжительным.

Этап роста связан с интенсивным нарастанием продаж, отражающим увеличение популярности товара по мере осведомленности покупателей.

Этап зрелости характерен значительным снижением темпа роста продаж, постоянной их стабилизации на одном уровне.

Этап насыщения характерен прекращением роста оборота, устойчивый сбыт.

Спад – этап постоянного снижения спроса и объема продаж, потеря интереса к товару.

Уровень сбыта на различных этапах жизненного цикла товара зависит от конкурентоспособности товара в этот период.

Конкурентоспособность товара – совокупность свойств товара, делающих его более предпочтительным по сравнению с товарами конкурентов на данном рынке.

Оценка конкурентоспособности товара производится только с учетом его реализации. Набор параметров, определяющих конкурентоспособность изделия относительно стабилен, в тоже время значимость их меняется в зависимости от сложившихся на рынке условий.

В основу оценки конкурентоспособности должен быть заложен сопоставительный анализ объектов одного функционального назначения, производимых различными предприятиями.

Исследования поведения покупателей показывают, что они отдают предпочтение такому товару, у которого отношение полезного эффекта P к затратам на его приобретение и использование C (т.е. удельный полезный эффект) максимален по сравнению с другими аналогичными товарами. В самом общем виде условие конкурентоспособности товара (предпочтение одного из товаров) имеет вид:

, (1)


Определить, соответствует ли определенный товар этому условию, можно лишь в процессе его сравнения с другими представленными на рынке товарами.

Таким образом, оценка конкурентоспособности товара, планируемого к продаже, включает следующие этапы:

·     анализ рынка и выбор наиболее конкурентоспособного товара-образца в качестве базы для сравнения и определения уровня конкурентоспособности нашего товара;

·     определение набор сравниваемых параметров обоих товаров;

·     расчет интегрального показателя конкурентоспособности нашего товара.

Выбор образца является одним из наиболее ответственных моментов анализа конкурентоспособности. Ошибка на этом этапе может привести к искажению результатов всей работы. Образец должен принадлежать к той же группе товаров, что и анализируемое изделие, быть наиболее представленным для данного рынка, завоевавшим максимальное число покупательских предложений.

При определении набора подлежащих оценке и сравнению параметров конкурентоспособности товара исходят из того, что часть параметров характеризует потребительные свойства товара (его потребительную стоимость), а другая часть – его экономические свойства (стоимость). Потребительные свойства каждого товара, из которых складывается его полезный эффект, описываются набором «жестких» и «мягких» потребительских параметров.

«Жесткие» параметры описывают важнейшие функции товара и связанные с ними основные характеристики, заданные конструктивными принципами изделия. Наиболее представительной группой «жестких» параметров являются технические, которые, в свою очередь, подразделяются на параметры назначения (классификационные, технической эффективности, конструктивные), экономичности, а также параметры соответствия международным и национальным стандартам, нормативам, законодательным актам и т.д. – все это регламентируемые параметры.

«Мягкие» параметры характеризуют эстетические свойства товара (дизайн, цвет, упаковка и т.п.).

Определение набора потребительных параметров товара – ключевой момент анализа его конкурентоспособности. Далее устанавливают иерархию этих параметров, выдвигая на первый план те, которые имеют наибольшую значимость («вес») для потребителя.

Обладающие наибольшим весом параметры (приоритетные с точки зрения конкурентоспособности) в первую очередь становятся объектами тщательного исследования. Такой подход не исключает анализа второстепенных параметров, тем более что в ряде случаев именно они могут оказаться очень важными для рыночного успеха товара. Не следует пренебрегать даже самой малой возможностью повышения конкурентоспособности товара, однако следует помнить, что наибольший эффект дает улучшение приоритетных параметров. Суть такого улучшения – максимальное удовлетворение потребностей покупателя.

По аналогичной схеме определяется набор экономических (стоимостных) параметров товара, характеризующих его основные экономические свойства, иными словами, затраты покупателя на приобретение и использование изделия на протяжении всего периода его эксплуатации (потребления).

Величины экономических параметров определяется ценой изделия Ц1, расходами на его транспортировку Ц2, установку Ц3, обучение персонала Ц4, эксплуатацию Ц5, ремонт Ц6, техническое обслуживание Ц7, налоги Ц8, страховые взносы Ц9 и т.д. В совокупности эти расходы составляют цену потребления Ц – объем средств, нужных потребителю в течение всего срока службы товара:

Ц = Ц1 + Ц2 + Ц34 + Ц5 + Ц6 + Ц7 + Ц8 + Ц9 + ¼ Ц =


Расчет интегрального показателя относительной конкурентоспособности основан на сравнении его параметров с параметрами существующего (или разрабатываемого) товара, наиболее полно отражающими потребности потребителя.

Информацию о характере требований покупателей дают рыночные исследования. Такая информация может быть прямой, как результат целенаправленного сбора соответствующих сведений, и косвенной, позволяющей получить необходимые сведения по размерам сбыта и доле рынка наиболее конкурентоспособных, т.е. соответствующих потребительским запросам, товаров. Косвенная информация очень важна, т. к. содержит элемент обобщения. Кроме того, она наиболее доступна и более приемлема для предприятия-экспортера, не имеющего на внешнем рынке специализированных информационных служб.

Чтобы оценить отношение параметров нашего изделия и параметров образца, необходимо эти данные количественно определить. Каждый «жесткий» параметр имеет определенную величину, выраженную в некоторых единицах. По этой величине покупатель видит, насколько свойство изделия, выраженное данным параметром, удовлетворяет его потребность. Степень удовлетворения выражают в форме процентного отношения фактической величины параметра к той величине, при которой потребность удовлетворяется на 100%. Расчет проводят по всем количественно оцененным параметрам, получая для каждого параметрический индекс.

Оценку степени удовлетворения потребности покупателя потребительными свойствами изделия производят с помощью сводного параметра индекса, который рассчитывается по формуле:

, (2)

где n – число анализируемых количественных параметров;

aj – вес j‑го параметрического индекса;

J’ТП – параметрический индекс j‑го параметра.

Параметрический индекс любого нормативного (регламентируемого) параметра JНi может иметь только два значения – 0 и 1, в зависимости от того, соответствует ли данный параметр всем требуемым нормам и стандартам. Нулевое значение индекса означает полную потерю конкурентоспособности изделия.

После расчета параметрических индексов и «весов» каждого экономического параметра определяют сводный индекс конкурентоспособности по экономическим параметрам (JЭП), который выглядит следующим образом:

, (3)

где m – число анализируемых экономических параметров;

bj – вес j‑го параметрического индекса;

J’ЭПj – параметрический индекс j‑го параметра.

Сводные индексы конкурентоспособности по потребительным экономическим параметрам (JТП, JН, JЭП) дают интегральный показатель относительной конкурентоспособности KИ изделия по отношению к образцу. Этот показатель отражает различия между потребительными эффектами сравниваемых товаров:

(4)

Если KИ > 1, анализируемое изделие превосходит по конкурентоспособности образец, если KИ < 1, – уступает, если KИ = 1, – находится на одном уровне. Наша задача получить KИ ³ 1. Это можно сделать, целенаправленно увеличивая JТП и уменьшая JЭП, улучшая соответствующие потребительские и экономические параметры изделия.

3.1.1   Порядок проведения оценки конкурентоспособности товара

1.   Изучение рынка.

·           сбор данных о конкурентах

·           анализ проекта, оценка стоимости, определение емкости рынка и перспектив сбыта

2.   Формулирование требований к изделию.

3.   Определение цели анализа конкурентоспособности.

4.   Анализ нормативных параметров.

·           расчет группового показателя конкурентоспособности по нормативным параметрам.

·           выбор базового образца.

·           определение группового показателя конкурентоспособности по техническим параметрам и группового показателя конкурентоспособности по экономическим параметрам, анализ цены потребления

·           расчет интегрального показателя уровня конкурентоспособности с базовым образцом.

3.2       Оценка конкурентоспособности моделирующей системы MICROSIM

С помощью данной схемы проведем оценку конкурентоспособности рассматриваемого программного продукта.

3.2.1   Изучение рынка

По причине относительной молодости отрасли, компании, специализирующиеся на разработке экспертных и моделирующих систем выходят на рынок с одним-двумя программными продуктами, поэтому целесообразно обратиться к рассмотрению межтоварной конкуренции.

Очевидно, что рынком реализации нашего товара является рынок программного обеспечения (ПО).

Моделирующие системы являются одной из разновидностей экспертных систем. В последнее время экспертные системы получают все более широкое распространение. Они используются при медицинской диагностике, прогнозировании, контроле и управлении производством и т.д. На данном этапе развития вычислительной техники применение экспертных, а, следовательно, и моделирующих систем становиться все более необходимым, благодаря чему наблюдается растущий интерес потенциальных покупателей к данному виду программного обеспечения, поэтому можно с уверенностью утверждать, что время жизненного цикла моделирующих систем, в частности MICROSIM, находится на этапе роста.

В настоящий момент времени возникновение повышенной необходимости в экспертных, а, следовательно, и в моделирующих системах

С учетом узкой специфики рассматриваемого программного средства можно выделить два сегмента потенциальных потребителей. Во-первых, это инженеры – исследователи, разработчики и проектировщики систем обработки данных, локальных вычислительных сетей, мультипроцессорных и мультипрограммных систем. Во-вторых, это могут быть учебные заведение, в образовательную программу которых включено изучение вычислительных систем и сетей, поскольку MICROSIM позволяет изучать их работу достаточно наглядно.

3.2.2   Требования к программному обеспечению

Путем опроса пользователей моделирующих систем (в данном случае студентов, изучающих работу этих систем в рамках академической программы), были сформулированы следующие требования, которым должна удовлетворять моделирующая система:

·     Распространенность аппаратно-программной платформы.

·     Простота обучения работе с системой.

·     Простота описания изучаемой модели.

·     Удобный интерфейс.

·     Продолжительность процесса моделирования.

·     Масштабируемость системы.

·     Возможность изменения параметров моделирования в процессе работы.

·     Цена.

Аппаратно-программная платформа подразумевает под собой сочетание, как аппаратной части (самого компьютера) так и операционной системы, под управлением которой должна работать моделирующая система. Распространенность платформы обеспечивает больший охват рынка, ввиду отсутствия необходимости приобретения нового оборудования для обеспечения работы систем.

Простота обучения не требует от потенциальных потребителей значительных затрат на переквалификацию штата сотрудников.

Под простотой описания изучаемой модели в данном случае подразумевается понятность и наглядность, позволяющая быстро находить ошибки при задании параметров и описании модели и тем сокращающая общее время на разработку проекта.

Удобство интерфейса – это наличие в системе отлаженного механизма взаимодействия пользователя с программой в режиме вопрос – ответ. Следствием удобного интерфейса является меньшее утомление пользователей системы и, соответственно, наибольшую эффективность их труда.

Продолжительность процесса моделирования – это время, затрачиваемое системой на обработку параметров модели и непосредственно моделирование, до получения необходимого результата. Меньшая продолжительность моделирования сокращает общее время на разработку проекта и, соответственно, сокращает затраты, а также позволяет за одно и то же время перебрать большее количество параметров модели, нежели более медленная система.

Под масштабируемостью понимается применимость системы как к маленьким моделям, состоящим из одного сегмента и нескольких элементов, решающим частные задачи, так и к глобальным, состоящим из множества сегментов. Также желательно наличие возможности вести разработку целого объекта по частям, с последующим объединением результатов.

Возможность изменения параметров моделирования в процессе работы позволяет полнее исследовать модель за более короткий промежуток времени.

Цена системы определяет возможность ее приобретения небольшими отделами, или же только крупными предприятиями.

3.2.3   Определение цели анализа конкурентоспособности

МИКРОСИМ является системой разработанной в МГИЭТ и предназначенной для использования в рамках академической программы кафедры ИПОВС. Тем не менее, МИКРОСИМ является законченным программным продуктом, который может оказаться крайне полезным в некоторых областях производства, касающихся разработок систем, исследование которых было бы целесообразней производить на этапе проектирования, в силу чего данное ПС быть представлено на рынке как самостоятельный продукт. Поэтому целью данного анализа является выяснение способности МИКРОСИМ составить конкуренцию аналогичным программным продуктам. Также исследование конкурентоспособности может помочь выявить те характеристики системы, которые снижают ее конкурентоспособность и нуждаются в доработке и улучшении.


3.2.4   Анализ нормативных параметров

Прежде чем переходить к анализу нормативных параметров, остановимся на выборе базового образца. Для того чтобы в полной мере оценить характеристики системы, необходим некоторый опыт работы с ней. В следствии этого для сравнения была выбрана система моделирования GPSS фирмы Minuteman Software, как наиболее доступная для исследования.

Анализируемые параметры следует разделить на параметры, определяемые количественно и параметры определяемые качественно. Т.е. на «жесткие» и «мягкие» параметры.

К жестким параметрам можно отнести:

·     Распространенность аппаратно-программной платформы.

·     Продолжительность процесса моделирования.

·     Масштабируемость системы.

·     Возможность изменения параметров моделирования в процессе работы.

Мягкими параметрами являются:

·           Простота обучения работе с системой.

·           Простота описания изучаемой модели.

·           Удобный интерфейс.

Ввиду того, что мягкие параметры труднее поддаются количественной характеристике, т. к. отражают субъективное восприятие человеком свойств объекта, их оценка будет производится по 10‑ти бальной системе.

Следует отметить, что в виду того, что обе системы написаны для одной и той же аппаратно-программной платформы, сравнивать их по этому параметру не имеет смысла.

Иерархия степени важности параметров, по которым производилась оценка, была установлена в результате опроса пользователей подобных систем. Аналогично были произведены качественные оценки «мягких» параметров.


Сравнительные характеристики системы МИКРОСИМ и GPSS
Сравниваемые характеристики Значимость характеристики Система Частный параметрический индекс
МИКРО – СИМ GPSS МИКРО – СИМ GPSS
Простота обучения работе с системой. 5 6 6 0,6 0,6
Простота описания изучаемой модели. 6 7 4 0,7 0,4
Удобный интерфейс 4 6 3 0,6 0,3
Продолжительность процесса моделирования. (мин.) 1 0,47 0,44 0,93 1
Масштабируемость системы. 2 1 0 0,1 0
Возможность изменения параметров моделирования в процессе работы. 3 1 0 0,1 0

Расчет сводного параметрических индексов сравниваемых моделей произведем по формуле (2)

Для идеальной, с точки зрения пользователя системы, (на 100% удовлетворяющей его потребностям) сводный параметрический индекс, оцениваемый по данным параметрам равен:

JИДЕАЛЬНОЙ = 6 + 5 + 4 + 3 + 2 + 1 = 21;

Параметрические индексы для МИКРОСИМА и для GPSS равны соответственно:

JМИКРОСИМ =6*0,7 + 5*0,6 + 4*0,6 + 3*0,1 + 2*0,1 +1*0,93 =

= 4,2 + 3 + 2,4 + 0,3 + 0,2 + 0,93 = 11,03;

JGPSS = 6*0,4 + 5*0,6 + 4*0,3 + 3*0 + 2*0 + 1 = 2,4 + 3 + 1,2 + 1 = 7,2;

Исходя из того, что параметрический индекс идеальной модели равен 21 определим степень удовлетворения потребности покупателя МИКРОСИМ и GPSS, выраженную в процентах:

Для МИКРОСИМ она равна: (11,03 * 100%) / 21 = 52%;

Для GPSS: (7,2 * 100%) / 21 = 34%;

Вычисленные индексы, выраженные в процентах, очень наглядно демонстрируют неоспоримые преимущества системы имитационного моделирования МИКРОСИМ над системой – конкурентом GPSS. Тем не менее, полученные данные говорят о том, что МИКРОСИМ способен удовлетворить потребности пользователей лишь наполовину.

Сравнительные характеристики исследуемых моделей по экономическим параметрам.

Ввиду особенностей эксплуатации ПО, под его экономическими параметрами подразумевается исключительно цена изделия. По причине специфичности изучаемого программного продукта и связанными с этим сложностями выяснения реальной стоимости подобных изделий, ограничимся эмпирической оценкой данного параметра.

На основе рассчитанных параметрических индексов, определим насколько цена МИКРОСИМ может превышать реальную цену GPSS. Для этого дополнительно вычислим приведенный индекс и различия в приведенных индексах.

Приведенный индекс вычисляется по формуле:

И равен соответственно: JМ = (34/52)*100 = 65;

Различие в приведенных параметрических индексах вычисляется по формуле:

И равно соответственно:

DJМ = (100 – 65) / 65*100 = 54;

Цена ПС в условиях независимости покупательского предпочтения вычисляется по формуле:

Итак:

ЦМ = [цена системы-конкурента]*(100 + 54) / 100 =

[цена системы-конкурента] * 1,54;

Из вышеприведенных расчетов вытекает, что разработанная в МГИЭТ система МИКРОСИМ вполне способна конкурировать с существующими системами подобного рода. Потенциальная стоимость системы имитационного моделирования МИКРОСИМ на рынке может в 1,54 раза превышать реальную стоимость GPSS.

Тем не менее, МИКРОСИМ нуждается в доработке. Если за основу взять некую систему, удовлетворяющую потребностям потребителя на 100%, то, исходя из тех же расчетов, получим что потенциальная стоимость МИКРОСИМ не должна превышать 0,521 от стоимости «идеальной» системы. Что очевидно и при рассмотрении полученного в результате расчетов сводного параметрического индекса.

Из всех сравниваемых в процессе исследования характеристик, в настоящее время наиболее целесообразно и доступно обратиться к усовершенствовании двух из них:

·     разработке более удобного интерфейса

·     создания более простого способа описания модели

Подобные доработки позволили бы увеличить конкурентоспособность МИКРОСИМ на 14%.

Следует отметить, что работы, связанные со второй частью рекомендаций по повышению конкурентоспособности уже были проведены. Разработанный редактор моделей СВПИМ является очень мощным дополнением к МИКРОСИМ. Благодаря данному программному средству процесс описания описание модели значительно упрощается.


4.         Санитарно-гигиенические условия труда на рабочем месте пользователя ЭВМ

Производственно-экологическая безопасность (ПБ) – это система законодательных актов и норм, направленных на обеспечение безопасности труда и соответствующих этому социально-экономических, организационных, технических и санитарно-гигиенических мероприятий.

ЭВМ в настоящее время являются орудием труда широкого круга пользователей. Нормальная работа пользователей ЭВМ во многом зависит от того, в какой мере условия его работы соответствуют оптимальным. Под условиями работы подразумевают освещение, температуру, влажность и вентиляцию воздуха, шум и вибрацию и т.д.

Обеспечение оптимальных условий труда на рабочем месте пользователя ЭВМ направлено на снижение уровня утомляемости пользователя.

Целью данного раздела является анализ условий труда пользователей ЭВМ и описание основных методов нейтрализации опасных и вредных факторов.

4.1       Неблагоприятные факторы

Работа за дисплеем ЭВМ объективно связана с воздействием следующих неблагоприятных для здоровья человека факторов:

пробой высоковольтного напряжения на незащищенные токоведущие участки;

поражение электрическим током питающей сети;

повышенный уровень шумов и вибраций;

проникающее излучение электронно-лучевой трубки;

нерациональное освещение;

неблагоприятный микроклимат (избыток тепла);

психофизиологические факторы.

Первые два фактора не являются источниками постоянно действующей опасности. Защита от них гарантируется тщательным соблюдением правил техники безопасности при эксплуатации ЭВМ.

Остальные факторы относятся к источникам постоянной опасности. Их действие сказывается при каждодневной работе.

4.2       Электроопасность и пожароопасность

Источниками электроопасности в помещении для работы с ЭВМ являются блоки ЭВМ, корпус устройства и приборы в случае возникновения неисправности (например, при нарушении защитного заземления, изоляции проводов, применении неправильных приемов включения в сеть и выключения из сети вилок электропитания).

Источниками пожароопасности являются устройства ЭВМ, измерительные устройства при возникновении перегрузок цепей питания и неисправностей в виде короткого замыкания.

Защитой от прикосновения к токоведущим частям электроустановок служат изоляция проводников, использование защитных кожухов, а также инструмента с изолирующими ручками при ремонте оборудования ЭВМ.

Защитой от напряжения, появляющегося на корпусах электроустановок в результате нарушения изоляции, являются защитное заземление, зануление и защитное отключение.

Важным организационным мероприятием является проведение инструктажа по электро- и пожароопасности всех лиц, допущенных к работе на ЭВМ. При проведении противопожарных инструктажей необходимо добиваться, чтобы персонал практически умел пользоваться первичными средствами тушения пожара и средствами связи.

Для тушения пожара применяются ручные огнетушители и переносные установки. На предприятиях электронной промышленности широко применяются пенные огнетушители ОП‑3, ОП‑5, а также ОХП‑10. Электросети и электроустановки находятся под напряжением, тушить водой их нельзя, так как через струю воды может произойти поражение электрическим током. Именно поэтому для тушения пожара, возникшего из-за неисправности электроприборов, применяются пенные огнетушители.

Возможность быстрой ликвидации пожара во многом зависит от своевременного оповещения о пожаре. Весьма распространенным средством связи является телефонная сеть.

4.3       Шумы и вибрации

Источниками шума и вибрации, в основном, являются подвижные части печатающих устройств и дисководов. Шум неблагоприятно действует на организм человека, вызывая различные физиологические отклонения в организме, психологические заболевания и снижает работоспособность. Утомление пользователей и операторов ЭВМ из-за шума увеличивает число ошибок при работе, способствует возникновению травм.

Шум – это совокупность звуков различной частоты и интенсивности. Характеристикой шума с точки зрения физиологического восприятия является понятие «громкость шума». Количественную оценку уровня громкости шума различных источников проводят путем сравнения с шумом на частоте 1000 Гц, для которого уровень силы принят равным уровню громкости. При этом для измерения уровня громкости шума введена единица в 1 фон. За один фон принят уровень громкости шума с частотой 1000 Гц при уровне силы шума 1 дб.

ГОСТ 12.1.003–83 «Шум, общие требования безопасности» устанавливает, что уровень звука на рабочем месте (в том числе при работе на ЭВМ) не должен превышать 50 дБ.

Основными мероприятиями по борьбе с шумом и вибрацией являются:

– Облицовка залов ЭВМ шумопоглащающей плиткой;

– использование различных шумоуловителей;

– размещение устройств на резиновых прокладках и амортизаторах.

4.4       Микроклимат

Большое значение для обслуживающего персонала и правильной эксплуатации вычислительной техники имеют соблюдение температурного режима и уровня влажности воздуха.

Согласно ГОСТ 12.1.005–88 оптимальными условиями являются:

температура 20–22 С и влажность 55–60%.

Мероприятиями по поддержания этих условий в залах с ЭВМ, где происходит значительное тепловыделение работающими устройствами, являются необходимость применять кондиционирование воздуха. В периоды выходных и праздничных дней, когда отсутствуют естественные тепловыделения, должно быть предусмотрено, особенно в зимнее время, искусственное поддержание температуры воздуха в вычислительном центре.

В соответствии с требованиями СН 245–71 определенные ограничения предъявляются и к размеру помещений. Так, объем производственных помещений на одного работающего должен составлять не менее 15 куб. м, а площадь – не менее 4.5 кв. м.

4.5       Освещенность

Одним из основных видов работ, выполняемых на вычислительном центре, является работа за дисплеем ЭВМ. Этот вид работ характеризуется тем, что требует от программиста или оператора постоянного внимания.

Недостаток или избыток освещения на рабочем месте может привести к быстрому утомлению, появлению головной боли, падению производительности труда, росту числа ошибок, а при систематическом нарушении режима освещенности – к нарушению зрения.

Правильно спроектированное и выполненное производственное освещение повышает производительность труда, оказывает благоприятное психологическое воздействие, повышает безопасность труда и не вредит здоровью программиста.

В дисплейном зале освещение должно быть совместное – естественное (боковое, через окна в наружных стенах) и искусственное – и соответствовать требованиям СНиП 4–79. По конструктивному исполнению искусственное освещение может быть двух видов – общее и комбинированное, когда к общему освещению добавляется местное. В большинстве случаев достаточно иметь общее искусственное освещение (лампы местного освещения могут быть использованы, например, при контроле работ графопостроителя или печатающего устройства).

Общее освещение подразделяется на общее равномерное (без учета расположения оборудования вычислительной техники) и общее локализованное освещение. Для дисплейного класса выбирают общее равномерное освещение. Величина минимальной освещенности устанавливается согласно условиям зрительной работы, которые определяются наименьшими размерами объекта различения, контрастом объекта с фоном и характеристиками фона.

Вид работ в дисплейном классе относится к высокой точности (размер объекта от 0.5 до 1.0 мм, контраст объекта с фоном – малый, фон – темный). Наименьшая необходимая освещенность при этом равна 300 лк.

При работе с ЭВМ помнить о следующем:

·     прежде чем начинать работу на ЭВМ необходимо пройти всестороннее обследование у окулиста;

·     терминал не должен быть обращен экраном к окну, так как интенсивная освещенность поля зрения может затопить глаза потоками света и размыть изображение оригинала на сетчатке;

·     уровень освещенности рабочего места должен составлять 2/3 от нормальной освещенности служебных помещений и составлять не менее 250 лк;

·     необходима оптимальная направленность светового потока. Свет должен падать под углом 60 градусов к ее нормали;

·     состав света должен быть оптимальным, т.е. естественное освещение плюс искусственный источник со спектральной характеристикой, близкой к солнечной;

·     осветительная установка не должна быть источником дополнительной опасности;

·     избавляться от бликов можно при помощи штор, занавесок или жалюзей, ограничивающих световой поток;

·     стена или какая-нибудь другая поверхность сзади программиста должна быть освещена также как и экран;

·     если нельзя избавиться от бликов, то необходимо пользоваться специальными фильтрами для экрана.

4.6       Расчет искусственного освещения

Для расчета искусственного освещения воспользуемся методом использования светового потока. Основное уравнение этого метода:

где:

Eн – нормированная минимальная освещенность (лк);

S – площадь освещаемого помещения (кв м);

Z – коэффициент минимальной освещенности, равный отношению Eср/Eмин (значение его находится в пределах 1.1–1.5);

K – коэффициент запаса;

N – число светильников помещения;

n – коэффициент использования светового потока лампы;

F – световой поток группы ламп (лм).

Для определения n необходимо подсчитать индекс помещений по формуле:

где:

A, B – два характерных размера помещения;

H – высота светильников над рабочим местом.

В дисплейном зале, где проводилась работа над темой данного дипломного проекта, эти величины имеют следующие значения:

A = 8 м,

B = 4 м,

H = 3 м.

Из таблиц для полученного I и светильников с люминесцентными лампами находим:

K = 1.4

n = 0.36 (p(n) = 50%, p(с) = 30%).

где:

H – высота подвеса светильников (H = 3 м).

Для освещения лаборатории используются люминесцентные лампы ЛБ40 со световым потоком F равным 3120 лм.

Зная световой поток одного светильника, по приведенной выше формуле находим необходимое количество светильников:


шт.

После округления получим, что число светильников N = 6 шт. При этом Eн = 300 лк и S = A * B = 24 кв м. Учтем при этом, что в светильнике находятся две лампы.

Для расчета примем, что освещение дисплейного класса равномерное. Тогда расстояние между светильниками (L) должно соответствовать оптимальным значениям: L = 4 м.

Если же теперь, зная число светильников рассчитать световой поток, то получается F = 2750 лм

На практике допускается отклонение светового потока лампы от расчетного значения на 10–20%. В данном случае отклонение светового потока лампы от расчетного составляет

что лежит в пределах допустимого.

Подсчитаем фактическое значение минимальной освещенности рабочей поверхности с учетом выбранной лампы:

 лк

Воздействие статического электричества и излучения

Для предотвращения образования и защиты от статического электричества в помещениях ВЦ необходимо использовать нейтрализаторы и увлажнители, а полы должны иметь антистатическое покрытие. Защита от статического электричества должна проводиться в соответствии с санитарно-гигиеническими нормами допускаемой напряженности электрического поля. Допускаемые уровни напряженности электростатических полей не должны превышать 20кВ в течении 1 часа (ГОСТ 12.1045–84).

Спектр излучения компьютерного монитора включает в себя рентгеновскую, ультрафиолетовую и инфракрасную область, а также широкий диапазон электромагнитных волн других частот.

От рентгеновских лучей опасности практически нет, так как они практически полностью поглощаются веществом экрана. Наибольшую опасность представляют биологические эффекты низкочастотных электромагнитных полей, которые до настоящего времени считались абсолютно безвредными. Однако недавно в ряде экспериментов было обнаружено, что электромагнитные поля с частотой 60 Гц могут инициировать биологические сдвиги (вплоть до нарушения синтеза ДНК) в клетках животных. В отличие от рентгеновских лучей электромагнитные волны обладают необычным свойством – опасность их воздействия не обязательно уменьшается с уменьшением интенсивности облучения; определенные электромагнитные волны действуют на клетку лишь при малых интенсивностях излучения или в конкретных частотах – окнах прозрачности.

Поскольку источник высокочастотного напряжения компьютера строчный трансформатор – помещается в задней или боковой части терминала, уровень излучения со стороны задней панели дисплея выше, причем стенки корпуса не экранируют излучения.

Мерами безопасности являются требования к пользователям, находиться не ближе чем 1.2 м от задних или боковых поверхностей соседних терминалов. Ряд специалистов рекомендует сидеть на расстоянии 70 см от экрана дисплея – однако в этом случае необходима консультация с окулистом. Рекомендуется устанавливать на экран монитора защитные фильтры, которые частично экранируют магнитные поля, а также устраняют статические поля.


4.7       Организационные мероприятия по созданию условий безопасного труда

Каждого вновь принятого на работу программиста или оператора инструктируют. Степень усвоения инструкции проверяется комиссией. Инструктаж на рабочем месте проверяется один раз в квартал. Оператор ЭВМ должен иметь группу 1 квалификации по электробезопасности.

Обслуживающий ЭВМ персонал должен обладать достаточными знаниями электроники и правил эксплуатации ЭВМ.

Обязательно ведение книги приема и сдачи смен, в которой отмечаются неисправности и способы их устранения. Перед началом смены рекомендуется проводить ежедневное технологическое тестирование основных блоков ЭВМ с использованием аппаратных и программных средств диагностики.

К работе на ЭВМ допускаются лица, прошедшие медицинский осмотр при приеме на работу. Последующие осмотры проводятся один раз в два года. Обязательно проведение ежедневной уборки помещений, поддержание необходимых климатических условий.

4.8       Психофизиологические факторы

В современных условиях труд программиста изменился в таком направлении, что доля физических усилий сокращается, в то время как нагрузка на психику возрастает.

К психофизиологическим факторам относятся физические и нервно-психические нагрузки. Физические нагрузки, в основном, связаны с малой подвижностью на рабочем месте, что взывает гиподинамию – недостаточную мышечную активность. Для снятия напряжений такого рода необходимо после 1.5–2 часов работы делать перерыв, заниматься производственной гимнастикой.

Наряду с этим, профессия программиста требует высокого нервно-психического и нервно-эмоционального напряжения. Возникает проблема создания такой техники и производственной среды для человека, которая соответствовала бы его анатомофизиологическим и психологическим особенностям. При работе на ЭВМ рекомендуется находиться за экраном дисплея не более 3‑х часов в сутки. Разумное чередование работы и отдыха позволяет человеку вести активную творческую жизнь.

В этой главе дипломного проекта рассмотрены требования охраны труда и разработаны рекомендации по оптимизации санитарно-гигиенической обстановки при выполнении работ на ЭВМ.

Установлено, что уровень шума на рабочем месте не должен превышать 50 дб, объем производственного помещения на одного работающего должен составлять не более 15 куб. м, площадь – не менее 4.5 кв. м, наименьшая допустимая освещенность – 300 лк.

Показана важность и необходимость организационных и санитарно-профилактических мероприятий по созданию условий безопасного труда.

В данной главе был проведен расчет искусственного освещения и подсчитано фактическое значение минимальной освещенности дисплейного класса – 300 лк.

Вопросы экологической безопасности не рассматривались, т.к. работа с ЭВМ не связана с использованием природных ресурсов и не представляет опасности для окружающей среды.


Используемая литература

1. МИКРОСИМ, «Система Е-сетевого имитационного моделирования. Концепция и возможности». Москва: МИЭТ, 1994 г.

2. МИКРОСИМ, «Система Е-сетевого имитационного моделирования. Описание языка». Москва: МИЭТ, 1995 г.

3. МИКРОСИМ, «Система Е-сетевого имитационного моделирования. Руководство пользователя». Москва: МИЭТ, 1994 г.

4. Джон Матчо, Дэвид Р. Фолкнер, «DELPHI». Binom, 1995 г.

5. А. Федоров, «Создание Windows – приложений в среде Delphi». Москва, компьютер пресс, 1995 г.

6. Моисеева Н.К., Костина Г.Д. «Маркетинговые исследования при создании и использовании программных продуктов. Методические указания для выполнения курсовых и дипломных работ по специальности «Менеджмент»». Москва, 1996 г.

7. Ф. Котлер, «Основы маркетинга», Москва, Ростинтер, 1996 г.

8 Константинова Л.А. Ларионов Н.М., Писеев В.М., «Методические указания по выполнению раздела «Охрана труда» в дипломном проекте для студентов». М: МИЭТ 1988 г.

9. Константинова Л.А. Ларионов Н.М., Писеев В.М., «Методы и средства обеспечения безопасности технологических процессов на предприятиях электронной промышленности». Москва: МИЭТ 1990 г.

10. Долин П.А., «Справочник по технике безопасности». Энергоатомиздат 1984 г.


Информация о работе «Подсистема визуального отображения процесса интерпретации сетевых моделей в системе имитационного моделирования МИКРОСИМ»
Раздел: Информатика, программирование
Количество знаков с пробелами: 118569
Количество таблиц: 6
Количество изображений: 11

0 комментариев


Наверх