1. Выражения для непрерывных функций Радемахера
2. Матрица для системы дискретных функций Радемахера при N = 5.
Rad(0,t) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Rad(1,t) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
Rad(2,t) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
Rad(3,t) | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
Rad(4,t) | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
Rad(5,t) | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
3. Графики функций от до .
4. Выражение для нормированных функций Хаара.
5. Графики нормированных функций от до .
6. Графики ненормированных функций от до .
Выполнение работы1. Используя преобразование Хаара рассчитаем амплитудный и фазовый спектр заданного сигнала
А. Используем нормированные функции Хаара.
Б. Используем ненормированные функции Хаара
2. Синтезируем заданный сигнал и построим графики для обоих случаев
А. Используем нормированные функции Хаара
Б. Используем ненормированные функции Хаара
Выводы по работе
В данной лабораторной работе мы изучили особенности кусочно-линейных ортогональных функций Радемахера и Харра. Получили выражения для непрерывных функций Харра и Радемахера, построили графики этих функций. Построили матрицу для системы дискретных функций Радемахера при N = 5. Для функций Харра задали и построили графики нормированных и ненормированных функций. Получили практические навыки расчета спектров сложных сигналов, используя преобразование Хаара, найдя амплитудный и фазовый спектры заданного сигнала. После синтезирования сигналов, в случае нормированных функций Харра, получили исходный сигнал только после перехода на нормированное время. Это объясняется погрешностью программных расчетов. В случае же нормированных функций, заданный сигнал получить не удалось из-за, опять же, программных погрешностей вычисления.
0 комментариев