4. Математическая Вселенная Евклида

По сравнению с Платоном и его современниками, следующему поколению математиков пришлось жить в ином мире. В 338 году до н.э. царь Филипп Македонский разгромил ополчение греческих полисов; кончилась эпоха демократии, началась имперская эпоха. Сын Филиппа - Алекандр завоевал весь Ближний Восток, вплоть до Индии. Наследники Александра стремились удержать завоеванное не только силой меча, но и внедрением греческой культуры в умы новых подданных. Обученные Аристотелем, эти новые цари - Птолемей в Египте, Селевк в Сирии и Иране, Антигон в Малой Азии - считали греческую науку важнейшей частью эллинской культуры. Поэтому в новых греческих столицах на Востоке сразу появились общедоступные библиотеки, а при них - первые "научно-исследовательские институты". Самым известным учреждением этого рода стал Музей ("храм всех муз") в Александрии Египетской. Здесь собрались сильнейшие ученые грекоязычного мира, и начался новый расцвет науки. Самое заметное различие в положении науки "при царях" и "при демократии" - в том, что достижения ученых перестали волновать столичную толпу. Наука (как и политика) сделалась "спортом для избранных", хотя школьников продолжали учить геометрии и арифметике. Но большая часть учителей теперь не занималась научным творчеством; поэтому понадобились хорошие учебники. С этой целью Аристотель написал "Физику", "Зоологию" и "Органон", а Евклид - знаменитую книгу "Начала", первую и лучшую энциклопедию элементарной математики.

Если бы Евклид захотел только создать хороший школьный учебник - он легко достиг бы этой цели. Но через сто лет его имя забылось бы, заслоненное именами новых авторов. Мы знаем, что получилось иначе: книга Евклида прожила 20 веков, прежде чем у нее появились достойные соперницы. Дело в том, что Евклид сумел навести порядок во всем мире идеальных математических объектов - подобно тому, как Пифагор наводил порядок в реальном мире с помощью идеальных понятий. И пока "зоопарк" этих понятий не расширился более чем вдвое по сравнению с эпохой Евклида - не было нужды в иных книгах на ту же тему. Только в конце 18 века Эйлер добавил к "Началам" Евклида свои "Основы" - первую энциклопедию новой алгебры и математического анализа.

Мы очень многое знаем об Эйлере; почему мы так мало знаем о личности Евклида" Он родился в Афинах, учился в Академии. В начале 3 века до н.э. переехал в Александрию и там работал в Музее. Наверняка у него было много учеников. Но никто не оставил об учителе таких сочных рассказов, какие сохранились о Платоне или Аристотеле. Известно лишь, что на вопрос царя Птолемея: нельзя ли попроще объяснить содержание геометрии тем, кто не силен в этой науке" - Евклид резко ответил: "В геометрии нет царской дороги!"

Рискованно делать глубокие выводы из одной фразы; но ясно, что Аристотель никогда не говорил таких слов царю Филиппу Македонскому. Возможно, Евклид был демократ по убеждению и не одобрял того факта, что геометрия стала "придворной" наукой" Может быть, не случайно он употребил слова "царская дорога"" Так называли систему отличных дорог, проложенных в Персидской империи. Двигаясь по ним, небольшая армия македонцев за 4 года покорила весь Ближний Восток. Покорила - но не освоила; науку же нужно осваивать, а не покорять! Таков, видимо, был смысл выговора, сделанного греческим ученым египетскому царю. А ведь Птолемея в Египте считали живым богом! Вероятно, Евклида царь просто терпел - и то недолго, а потом его подвергли забвению. Но книга осталась жить, и число ее читателей превысило число подданных царя Птолемея.

Как же выглядит в трактате Евклида математическая вселенная, составленная из фигур и чисел" С фигурами работать проще: каждый видел их на чертежах и может вообразить мысленно. Поэтому Евклид не дает строгих определений основных объектов геометрии: точки, линии, прямой, поверхности, плоскости. Вместо этого даны словесные описания важнейших свойств этих фигур. Например: "Точка есть то, что не имеет частей"; "Линия - это длина без ширины"; "Окружность - это кривая, которая около каждой точки устроена одинаково".

Самые общие свойства фигур, которые многократно используются в рассуждениях и не выводятся из более глубоких фактов - эти свойства Евклид назвал аксиомами. Например: "Все прямые углы равны между собой", или "Целое больше части".

Кроме аксиом, Евклид ввел ПОСТУЛАТЫ: это утверждения о свойствах основных геометрических конструкций. Например: "Через две точки проходит лишь одна прямая", или "Через точку вне прямой на плоскости проходит лишь одна прямая, не пересекающая эту прямую". Это последнее утверждение называют пятым постулатом Евклида.

Конечно, представить всю геометрию в виде идеального здания из определений, аксиом, постулатов и теорем Евклид не сумел. Ведь каждое необходимое утверждение кому-то покажется скучной мелочью, а каждое интересное утверждение у кого-нибудь вызовет возражение. И это хорошо: в науке важнее всего те утверждения, которые сами интересны и не очевидны, и их отрицания обладают тем же свойством. Таков оказался пятый постулат Евклида о параллельных прямых на плоскости.

Он имеет два возможных отрицания. Во-первых, можно предположить, что через точку вне прямой не проходит НИ ОДНА прямая, не пересекающая данную прямую; то есть, что параллельных прямых на плоскости вовсе нет! Во-вторых, можно предположить, что таких прямых через одну точку проходит НЕСКОЛЬКО; может быть, их бесконечно много. Евклид не рассматривал такие возможности. Он старался сжато и полно описать единственно возможный ("плоский") геометрический мир. Только в 19 веке другие математики - Гаусс и Лобачевский, Больяи и Риман - задумались о возможном существовании многих разных геометрических миров. Тогда выяснилось, что новые миры отличаются от старого евклидова мира всего одной-двумя аксиомами. Достаточно заменить пятый постулат Евклида одним из его возможных отрицаний - и мы попадаем в иной мир, носящий имя Лобачевского или Римана.

Но Евклида больше беспокоило другое. Какие факты геометрии нужно вкючить в создаваемую энциклопедию, а какими придется пренебречь, поскольку они не совсем ясны" Например, в "Началах" используются всего две разные линии - прямая и окружность. Но в эпоху Евклида уже были известны эллипс, парабола и гипербола. Сам Евклид изучал эти кривые, даже написал о них особую книгу (которая не сохранилась - но послужила основой для сходной книги Аполлония). Почему он ни словом не упомянул о новых кривых в "Началах""

Видимо, потому, что Евклид и его современники не знали об этих линиях всего, что им хотелось знать. Например, как вычислить площадь, ограниченную эллипсом или параболой" Как провести касательную к эллипсу или гиперболе в данной точке" Это сумел сделать только Архимед - через полвека после Евклида. Автор "Начал" этого не умел - и предпочел умолчать о сложных кривых, чтобы не смущать умы новичков-геометров необоснованными рассуждениями. Видимо, Евклид был прав; так же поступают авторы современных учебников или той энциклопедии, которую вы читаете.

Иначе получилось с арифметикой: здесь Евклид сам был перевопроходцем. Но беда в том, что у эллинов не было удачной системы обозначений даже для натуральных чисел. Вместо цифр греки пользовались буквами; позиционной системы для записи больших чисел они не знали. Поэтому даже обычная (для нас) таблица умножения имела в Элладе вид довольно толстого свитка. А работать с числами, когда они изображены буквами, очень не просто! Этим занимается особая наука - алгебра; современники Евклида о ней не подозревали.

В арифметике Евклид сделал три значительных открытия. Во-первых, он сформулировал (без доказательства) теорему о делении с остатком. Во-вторых, он придумал "алгоритм Евклида" - быстрый способ нахождения наибольшего общего делителя чисел или общей меры отрезков (если они соизмеримы). Наконец, Евклид первый начал изучать свойства простых чисел - и доказал, что их множество бесконечно. Но правда ли, что любое целое число разлагается в произведение простых чисел единственным способом" Доказать это Евклид не сумел - хотя располагал всеми необходимыми для этого средствами.

Только через 5 веков после Евклида александриец Диофант заполнил этот пробел строгим рассуждением. Он уже владел понятием отрицательного числа и "играл в арифметику" так же уверенно, как семью веками раньше Пифагор "играл в геометрию", работая с плоскими фигурами. Но создать богатую теорию чисел и уравнений эллины не успели вплоть до гибели Римской империи и гибели античной цивилизации в бурях 4-5 веков.


Информация о работе «Греческая математика»
Раздел: Право, юриспруденция
Количество знаков с пробелами: 44057
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
13129
0
0

... необходимо было решать задачи о делении наследства и которые нуждались в коротких и легких правилах для составления и решения алгебраических уравнений. И это на его работе, а не на работах великих греческих математиков, основывалась арабская алгебра, а после нее и алгебра возрождения. Мы видим, что астрономия продолжает свое развитие, пусть и с некоторыми перерывами, но математика долгое время ...

Скачать
190234
0
0

... предрассудками; но и в этом он был не хуже многих более поздних представителей науки Глава VII. АФИНЫ В ОТНОШЕНИИ К КУЛЬТУРЕ Величие Афин начинается в период между двумя персидскими войнами (490 и 480-479 годы до н.э.). До этого великих людей порождала Иония и Великая Греция (греческие города Южной Италии и Сицилии). Победы Афин над персидским царем Дарием при Марафоне (490 год до н.э.) и ...

Скачать
49799
0
0

... факт; доказательство получается с помощью обратной процедуры.) Принято считать, что последователи Платона изобрели метод доказательства, получивший название «доказательство от противного». Заметное место в истории математики занимает Аристотель, ученик Платона. Аристотель заложил основы науки логики и высказал ряд идей относительно определений, аксиом, бесконечности и возможности геометрических ...

Скачать
63027
0
2

... предшественников, накопленного в течении тысячелетий, что свидетельствует об интенсивности, динамизме их математического познания. Качественное отличие исследований Фалеса и его последователей от догреческой математики проявляется не столько в конкретном содержании исследованной зависимости, сколько в новом способе математического мышления. Исходный материал греки взяли у предшественников, но ...

0 комментариев


Наверх